Upgrade to Pro — share decks privately, control downloads, hide ads and more …

關於我和Data Dev 變成家人的那件事

關於我和Data Dev 變成家人的那件事

Event: 政治大學企業參訪
Speaker: Maggie Lee

LINE Developers Taiwan
PRO

April 21, 2023
Tweet

More Decks by LINE Developers Taiwan

Other Decks in Technology

Transcript

  1. ᮫ԙզ࿨%BUB%FW
    Ꮣ੒Ոਓతಹ݅ࣄ
    Data Dev/ Maggie Lee
    2023.04.21

    View Slide

  2. Maggie Lee
    Machine Learning Engineer
    @LINE Data Dev
    政⼤中⽂學⼠ 雙政⼤資科
    Research Assistant
    @CKIP Lab
    LINE TECH FRESH
    @LINE Data Dev
    Software Graphics intern
    @Intel CCG
    政⼤資科所碩⼠
    @LKT lab
    害怕⼀鏡到底的⼈⽣
    討厭社會對中⽂系的偏⾒
    連滾帶爬 跌跌撞撞 誤打誤撞
    被鄰座強制開啟新世界
    跨出舒適圈探索未知
    成⻑總是有失有得
    沒有極限的研究⽣活
    跨領域研究的酸甜苦辣
    每天都是⼀場新挑戰
    視野⼤展開
    努⼒點滿MLE技能
    Work Life balance才是終極⽬標

    View Slide

  3. Data Dev
    LINE
    Family
    Services
    LINE
    SHOPPING
    LINE
    SPOT
    LINE
    MUSIC
    LINE
    Sticker
    LINE
    VOOM
    LINE
    Reward
    Fact
    Checker
    LINE
    HELP TW
    LINE
    Travel
    NLP
    CV
    MarTech
    NER
    Classifier
    Duplica-on
    Detector
    Auto
    comple-on
    Keyword
    Extraction
    Related
    Search
    Text
    Genera-on
    User
    Tagging
    Data
    Analy,cs
    Recom-
    mendation
    CLV/
    RFM
    LINE
    TODAY
    3
    Data Dev的任務有哪些
    Image
    Search
    Social
    Intelligence
    UpliB
    Modeling
    Sales
    forecasting
    STT

    View Slide

  4. ML/DL
    Business
    Knowledge
    Data Scientist Data Engineer
    Data
    Visualization
    Statistics
    Data Dev成員組成
    Data Dev
    Machine Learning
    Engineer
    Product Engineer

    View Slide

  5. Big Data infra Backend
    Data Scientist Data Engineer
    SQL ETL
    Data Dev成員組成
    Data Dev
    Machine Learning
    Engineer
    Product Engineer

    View Slide

  6. MLOPs backend
    Data Scientist Data Engineer
    ML/DL ETL
    Data Dev成員組成
    Data Dev
    Machine Learning
    Engineer
    Product Engineer

    View Slide

  7. DS
    DE MLE
    PM Biz DS
    DE DS DS DE DS
    MLE
    Data
    prepara1on Scaling
    Performance
    Model decay
    Data dri=
    EDA Model build
    Hyper-parameter
    tuning Evalua1on
    Feature
    Engineering Error analysis
    一個ML專案會經過…
    MLE
    MLE MLE DE
    DS

    View Slide

  8. MLE的使命是什麼
    DEV: Develop/Testing/Deployment
    OPS: CI/CD/CT

    View Slide

  9. 9
    如何實踐MLOPs
    experiments Source code Pipeline CI Pipeline CD
    Automated
    Pipeline
    Trained
    model Model CD
    Con9nuous
    Training
    Monitoring
    Prediction
    service
    Develop
    produc9on
    Source code pipeline model package

    View Slide

  10. 10
    Data
    preparation
    Model
    training
    Model
    Evalua2on
    Model
    Valida2on
    Model
    Analysis
    Experiment

    View Slide

  11. 11
    如何實踐MLOPs
    experiments Source code Pipeline CI Pipeline CD
    Automated
    Pipeline
    Trained
    model Model CD
    Con9nuous
    Training
    Monitoring
    Predic9on
    service
    Develop
    produc9on
    Source code pipeline model package

    View Slide

  12. 12
    experiments Source code Pipeline CI Pipeline CD
    Automated
    Pipeline
    Trained
    model Model CD
    Monitoring
    Predic9on
    service
    如何實踐MLOPs
    Con9nuous
    Training
    Develop
    production
    Source code pipeline model package

    View Slide

  13. 13
    experiments Source code Pipeline CI Pipeline CD
    Automated
    Pipeline
    Trained
    model Model CD
    Monitoring
    Predic9on
    service
    如何實踐MLOPs
    Continuous
    Training
    Develop
    produc9on
    Source code pipeline model package

    View Slide

  14. 14
    experiments Source code Pipeline CI Pipeline CD
    Automated
    Pipeline
    Trained
    model Model CD
    Monitoring Prediction
    service
    如何實踐MLOPs
    Con9nuous
    Training
    Develop
    produc9on
    Source code pipeline model package

    View Slide

  15. 15
    Packaging Containerizing Deployment
    Model
    Service
    package管理
    Bundle
    file
    Docker
    Image
    Model
    file
    pipeline
    Object
    Storage
    harbor
    Docker
    build/push
    Meta
    data

    View Slide

  16. 16
    experiments Source code Pipeline CI Pipeline CD
    Automated
    Pipeline
    Trained
    model Model CD
    Monitoring
    Prediction
    service
    如何實踐MLOPs
    Con9nuous
    Training
    Develop
    produc9on

    View Slide

  17. • 建立儀表板管理資料管道狀態
    à 確認ETL是否成功
    • 紀錄table的來源及schema
    à 加速debug的效率
    • 針對特定重要指標進行監測(例如:UU/AU)
    à 確認資料源頭是否異常
    Data Observation
    一旦出現異常,可即時發送警告信或訊息
    除了系統health check 我們還可以做什麼

    View Slide

  18. 18
    Case – SmartText portal

    View Slide

  19. 19
    如果每次都要自己手動重新訓練好麻煩
    有沒有辦法直接拿到現成的模型?
    有了良好的模型 要怎麼讓使用者知道並使用呢?
    With
    ML background
    你們的模型好酷!
    但我對機器學習沒有概念 要怎麼應用呢...
    可以簡單到用手指頭點一點就好了?
    With no
    ML background

    View Slide

  20. 20
    如果我們可以做到…

    View Slide

  21. 21
    團隊如何分配任務
    任務量
    當前⼯作量
    任務適配度
    OKR
    任務緊急程度
    當前任務優先序

    View Slide

  22. 22
    團隊如何分配任務
    Objective Key Result
    與團隊⽬標有⼀致性/具備影響⼒/有時間限制
    Object
    Improve service stability
    Key Result
    1. Build data observation dashboard for 2+ service in Q3
    2. Design outage or service accident info process
    Example

    View Slide

  23. 23
    團隊如何分配任務
    任務緊急程度
    當前任務優先序
    任務適配度
    OKR
    任務量
    當前⼯作量

    View Slide

  24. 24
    團隊如何分配任務
    任務統計
    完成
    進行中
    待辦事項
    5
    4
    2
    優先序⾼
    優先序低
    high
    high
    low
    low
    medium
    medium medium
    medium
    medium
    low

    View Slide

  25. 25
    團隊如何分配任務
    任務量
    當前⼯作量
    任務適配度
    OKR
    任務緊急程度
    當前任務優先序

    View Slide

  26. 26
    團隊如何分配任務
    Leo
    1
    4
    1
    Nina
    3
    6
    1
    Maggie
    5
    4
    2

    View Slide

  27. 2"5JNF

    View Slide