Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Deep Learning Image Manipulation
Search
Leszek Rybicki
May 18, 2017
Research
2
210
Deep Learning Image Manipulation
Illustrated guide to some image manipulation methods, with demonstration.
Leszek Rybicki
May 18, 2017
Tweet
Share
More Decks by Leszek Rybicki
See All by Leszek Rybicki
Let's talk about Fakes
lunardog
0
130
How to Patch Image Classifiers
lunardog
0
2.2k
Towards Realistic Predictors - EN
lunardog
0
2.1k
Towards Realistic Predictors
lunardog
1
2.2k
Deep Learning Hot Dog Detector
lunardog
0
270
Finding beans in burgers: paper reading notes
lunardog
0
1.6k
Kelner: Serve Your Models
lunardog
0
120
Image Analysis at Cookpad
lunardog
1
1.8k
Kelner: serve your models
lunardog
1
380
Other Decks in Research
See All in Research
SSII2025 [SS2] 横浜DeNAベイスターズの躍進を支えたAIプロダクト
ssii
PRO
7
3.9k
投資戦略202508
pw
0
470
Trust No Bot? Forging Confidence in AI for Software Engineering
tomzimmermann
1
260
データxデジタルマップで拓く ミラノ発・地域共創最前線
mapconcierge4agu
0
210
20250624_熊本経済同友会6月例会講演
trafficbrain
1
590
CVPR2025論文紹介:Unboxed
murakawatakuya
0
150
集合間Bregmanダイバージェンスと置換不変NNによるその学習
wasyro
0
140
EcoWikiRS: Learning Ecological Representation of Satellite Images from Weak Supervision with Species Observation and Wikipedia
satai
3
100
PhD Defense 2025: Visual Understanding of Human Hands in Interactions
tkhkaeio
1
180
【輪講資料】Moshi: a speech-text foundation model for real-time dialogue
hpprc
3
630
AIによる画像認識技術の進化 -25年の技術変遷を振り返る-
hf149
7
3.9k
snlp2025_prevent_llm_spikes
takase
0
150
Featured
See All Featured
GraphQLとの向き合い方2022年版
quramy
49
14k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
126
53k
The Language of Interfaces
destraynor
160
25k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.1k
Art, The Web, and Tiny UX
lynnandtonic
302
21k
Automating Front-end Workflow
addyosmani
1370
200k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
185
54k
Done Done
chrislema
185
16k
Imperfection Machines: The Place of Print at Facebook
scottboms
268
13k
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.5k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Transcript
%FFQ-FBSOJOH *NBHF.BOJQVMBUJPO BOJMMVTUSBUFEHVJEF .-,JUDIFO
"CPVUNF w -FT[FL3ZCJDLJ w HJUIVC!MVOBSEPH w CPSOJO1PMBOE w .-3FTFBSDIFSBU$PPLQBE w
*MJLFOBUUP
DBSFFST!DPPLQBEDPN 8BOUUPXPSLXJUIVT
$POWPMVUJPOBM "SJUINFUJD OCIKE
*NBHFTUPGFBUVSFT
$POWPMVUJPO http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html input output input output kernel
4USJEF http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html 2px 2px 2px 2px
1BEEJOH http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html 2px 2px
4USJEF QBEEJOH http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html
5SBOTQPTFE http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html simulated here with padding also called “deconvolution” “fractional
stride”
%PXOTBNQMJOH features or small resolution image convolutional layer or layers
RGB image input output
6QTBNQMJOH upsampling CNN layer or layers RGB image features or
small resolution image input output
&ODPEFS%FDPEFS D E image in Decoder Encoder image out feature
space
'VMMZ$POOFDUFE $MBTTJpFS approve loan reject class data or features also
called “Dense” layer
$//$MBTTJpFS food person plant other AlexNet, LeNet, VGG…
'PPE/FU ™ food not food
@teenybiscuit
None
@teenybiscuit
@teenybiscuit
@teenybiscuit
@teenybiscuit
@teenybiscuit
(FOFSBUJWF "EWFSTBSJBM /FUXPSLT
Generator Discriminator https://speakerdeck.com/lunardog/deep-convolutional-voight-kampf-test “Couple of bots studying for the Turing
Test”
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks Alec
Radford, Luke Metz, Soumith Chintala (Submitted on 19 Nov 2015 (v1), last revised 7 Jan 2016 (this version, v2)) https://arxiv.org/abs/1511.06434
Generator Discriminator G MPPLTMFHJU UPUBMMZTIPQQFE D
G SFBM GBLF D D(G(noise)) ˠ real (FOFSBUPSUSBJOJOH Discriminator acts
as the teacher
G SFBM GBLF D SFBM GBLF D D(G(noise)) ˠ fake
D(photo) ˠ real %JTDSJNJOBUPSUSBJOJOH Generator provides negative examples
None
https://www.youtube.com/watch?v=rs3aI7bACGc ©Yota Ishida
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks Alec
Radford, Luke Metz, Soumith Chintala (Submitted on 19 Nov 2015 (v1), last revised 7 Jan 2016 (this version, v2)) https://arxiv.org/abs/1511.06434
$POEJUJPOBM ("/T
G NBMF GFNBMF DIJME FMEFSMZ G(noise | conditions) $POEJUJPOBM(FOFSBUPS
SJHIU XSPOH NBMF GFNBMF DIJME FMEFSMZ D $POEJUJPOBM%JTDSJNJOBUPS
SJHIU XSPOH NBMF GFNBMF DIJME FMEFSMZ D SJHIU XSPOH NBMF
GFNBMF DIJME FMEFSMZ SJHIU XSPOH NBMF GFNBMF DIJME FMEFSMZ D D
SJHIU XSPOH D $POEJUJPOBM("/ https://arxiv.org/abs/1411.1784 Conditional Generative Adversarial Nets Mehdi
Mirza, Simon Osindero (Submitted on 6 Nov 2014) Generator Discriminator NBMF GFNBMF DIJME FMEFSMZ G NBMF GFNBMF DIJME FMEFSMZ same condition
G NBMF GFNBMF DIJME FMEFSMZ SJHIU XSPOH NBMF GFNBMF DIJME
FMEFSMZ D $POEJUJPOBM("/ Discriminator Generator
https://www.faceapp.com/ Disclaimer: FaceApp authors don’t disclose their method. This is
only my guess. It may have nothing to do with GANs. original
original https://www.faceapp.com/
https://www.faceapp.com/ original
"SUJTUJD4UZMF5SBOTGFS Improved!
https://prisma-ai.com/
https://prisma-ai.com/ https://prisma-ai.com/
https://prisma-ai.com/ https://prisma-ai.com/
https://prisma-ai.com/ https://prisma-ai.com/
https://arxiv.org/abs/1603.08155 transformation network loss network Gram matrices in feature space
pre-trained content image style image
“Gram matrices in feature space” https://en.wikipedia.org/wiki/Gramian_matrix
https://www.youtube.com/watch?v=xVJwwWQlQ1o
$ZDMF("/
https://github.com/junyanz/CycleGAN
https://github.com/junyanz/CycleGAN
https://github.com/junyanz/CycleGAN
(FOFSBUPS transformation network https://arxiv.org/abs/1603.08155
GBLF IPSTF GBLF IPSTF … %JTDSJNJOBUPS fully convolutional judges patches
of the input image https://arxiv.org/abs/1603.08155
"EWFSTBSJBM-PTT X F G Y GBLF [FCSB GBLF [FCSB …
GBLF IPSTF GBLF IPSTF … X(F(horse)) ˠ classify as zebra Y(F(zebra)) ˠ classify as horse
$ZDMF-PTT G F G(F(image))ˠ the same image F G F(G(image))ˠ
the same image
https://www.youtube.com/watch?v=9reHvktowLY
5IF&OE