Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Deep Learning Image Manipulation
Search
Leszek Rybicki
May 18, 2017
Research
2
210
Deep Learning Image Manipulation
Illustrated guide to some image manipulation methods, with demonstration.
Leszek Rybicki
May 18, 2017
Tweet
Share
More Decks by Leszek Rybicki
See All by Leszek Rybicki
Let's talk about Fakes
lunardog
0
130
How to Patch Image Classifiers
lunardog
0
2.1k
Towards Realistic Predictors - EN
lunardog
0
2k
Towards Realistic Predictors
lunardog
1
2.2k
Deep Learning Hot Dog Detector
lunardog
0
260
Finding beans in burgers: paper reading notes
lunardog
0
1.5k
Kelner: Serve Your Models
lunardog
0
110
Image Analysis at Cookpad
lunardog
1
1.7k
Kelner: serve your models
lunardog
1
370
Other Decks in Research
See All in Research
公立高校入試等に対する受入保留アルゴリズム(DA)導入の提言
shunyanoda
0
5.6k
Streamlit 総合解説 ~ PythonistaのためのWebアプリ開発 ~
mickey_kubo
1
890
チャッドローン:LLMによる画像認識を用いた自律型ドローンシステムの開発と実験 / ec75-morisaki
yumulab
1
430
NLP2025 WS Shared Task 文法誤り訂正部門 ehiMetrick
sugiyamaseiji
0
190
When Submarine Cables Go Dark: Examining the Web Services Resilience Amid Global Internet Disruptions
irvin
0
190
Computational OT #4 - Gradient flow and diffusion models
gpeyre
0
290
データxデジタルマップで拓く ミラノ発・地域共創最前線
mapconcierge4agu
0
170
NLP2025SharedTask翻訳部門
moriokataku
0
290
GeoCLIP: Clip-Inspired Alignment between Locations and Images for Effective Worldwide Geo-localization
satai
3
230
ASSADS:ASMR動画に合わせて撫でられる感覚を提示するシステムの開発と評価 / ec75-shimizu
yumulab
1
370
Type Theory as a Formal Basis of Natural Language Semantics
daikimatsuoka
1
220
学生向けアンケート<データサイエンティストについて>
datascientistsociety
PRO
0
2.8k
Featured
See All Featured
We Have a Design System, Now What?
morganepeng
52
7.6k
How to train your dragon (web standard)
notwaldorf
92
6.1k
What's in a price? How to price your products and services
michaelherold
245
12k
Designing for Performance
lara
609
69k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.9k
Designing for humans not robots
tammielis
253
25k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
4
200
Embracing the Ebb and Flow
colly
86
4.7k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Become a Pro
speakerdeck
PRO
28
5.4k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
48
5.4k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2.1k
Transcript
%FFQ-FBSOJOH *NBHF.BOJQVMBUJPO BOJMMVTUSBUFEHVJEF .-,JUDIFO
"CPVUNF w -FT[FL3ZCJDLJ w HJUIVC!MVOBSEPH w CPSOJO1PMBOE w .-3FTFBSDIFSBU$PPLQBE w
*MJLFOBUUP
DBSFFST!DPPLQBEDPN 8BOUUPXPSLXJUIVT
$POWPMVUJPOBM "SJUINFUJD OCIKE
*NBHFTUPGFBUVSFT
$POWPMVUJPO http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html input output input output kernel
4USJEF http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html 2px 2px 2px 2px
1BEEJOH http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html 2px 2px
4USJEF QBEEJOH http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html
5SBOTQPTFE http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html simulated here with padding also called “deconvolution” “fractional
stride”
%PXOTBNQMJOH features or small resolution image convolutional layer or layers
RGB image input output
6QTBNQMJOH upsampling CNN layer or layers RGB image features or
small resolution image input output
&ODPEFS%FDPEFS D E image in Decoder Encoder image out feature
space
'VMMZ$POOFDUFE $MBTTJpFS approve loan reject class data or features also
called “Dense” layer
$//$MBTTJpFS food person plant other AlexNet, LeNet, VGG…
'PPE/FU ™ food not food
@teenybiscuit
None
@teenybiscuit
@teenybiscuit
@teenybiscuit
@teenybiscuit
@teenybiscuit
(FOFSBUJWF "EWFSTBSJBM /FUXPSLT
Generator Discriminator https://speakerdeck.com/lunardog/deep-convolutional-voight-kampf-test “Couple of bots studying for the Turing
Test”
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks Alec
Radford, Luke Metz, Soumith Chintala (Submitted on 19 Nov 2015 (v1), last revised 7 Jan 2016 (this version, v2)) https://arxiv.org/abs/1511.06434
Generator Discriminator G MPPLTMFHJU UPUBMMZTIPQQFE D
G SFBM GBLF D D(G(noise)) ˠ real (FOFSBUPSUSBJOJOH Discriminator acts
as the teacher
G SFBM GBLF D SFBM GBLF D D(G(noise)) ˠ fake
D(photo) ˠ real %JTDSJNJOBUPSUSBJOJOH Generator provides negative examples
None
https://www.youtube.com/watch?v=rs3aI7bACGc ©Yota Ishida
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks Alec
Radford, Luke Metz, Soumith Chintala (Submitted on 19 Nov 2015 (v1), last revised 7 Jan 2016 (this version, v2)) https://arxiv.org/abs/1511.06434
$POEJUJPOBM ("/T
G NBMF GFNBMF DIJME FMEFSMZ G(noise | conditions) $POEJUJPOBM(FOFSBUPS
SJHIU XSPOH NBMF GFNBMF DIJME FMEFSMZ D $POEJUJPOBM%JTDSJNJOBUPS
SJHIU XSPOH NBMF GFNBMF DIJME FMEFSMZ D SJHIU XSPOH NBMF
GFNBMF DIJME FMEFSMZ SJHIU XSPOH NBMF GFNBMF DIJME FMEFSMZ D D
SJHIU XSPOH D $POEJUJPOBM("/ https://arxiv.org/abs/1411.1784 Conditional Generative Adversarial Nets Mehdi
Mirza, Simon Osindero (Submitted on 6 Nov 2014) Generator Discriminator NBMF GFNBMF DIJME FMEFSMZ G NBMF GFNBMF DIJME FMEFSMZ same condition
G NBMF GFNBMF DIJME FMEFSMZ SJHIU XSPOH NBMF GFNBMF DIJME
FMEFSMZ D $POEJUJPOBM("/ Discriminator Generator
https://www.faceapp.com/ Disclaimer: FaceApp authors don’t disclose their method. This is
only my guess. It may have nothing to do with GANs. original
original https://www.faceapp.com/
https://www.faceapp.com/ original
"SUJTUJD4UZMF5SBOTGFS Improved!
https://prisma-ai.com/
https://prisma-ai.com/ https://prisma-ai.com/
https://prisma-ai.com/ https://prisma-ai.com/
https://prisma-ai.com/ https://prisma-ai.com/
https://arxiv.org/abs/1603.08155 transformation network loss network Gram matrices in feature space
pre-trained content image style image
“Gram matrices in feature space” https://en.wikipedia.org/wiki/Gramian_matrix
https://www.youtube.com/watch?v=xVJwwWQlQ1o
$ZDMF("/
https://github.com/junyanz/CycleGAN
https://github.com/junyanz/CycleGAN
https://github.com/junyanz/CycleGAN
(FOFSBUPS transformation network https://arxiv.org/abs/1603.08155
GBLF IPSTF GBLF IPSTF … %JTDSJNJOBUPS fully convolutional judges patches
of the input image https://arxiv.org/abs/1603.08155
"EWFSTBSJBM-PTT X F G Y GBLF [FCSB GBLF [FCSB …
GBLF IPSTF GBLF IPSTF … X(F(horse)) ˠ classify as zebra Y(F(zebra)) ˠ classify as horse
$ZDMF-PTT G F G(F(image))ˠ the same image F G F(G(image))ˠ
the same image
https://www.youtube.com/watch?v=9reHvktowLY
5IF&OE