Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Towards Realistic Predictors
Search
Leszek Rybicki
October 20, 2018
Research
1
2.2k
Towards Realistic Predictors
コンピュータビジョンのトップカンファレンスの一つである 「European Conference on Computer Vision (ECCV) 2018」の論文読み会です。
Leszek Rybicki
October 20, 2018
Tweet
Share
More Decks by Leszek Rybicki
See All by Leszek Rybicki
Let's talk about Fakes
lunardog
0
130
How to Patch Image Classifiers
lunardog
0
2.1k
Towards Realistic Predictors - EN
lunardog
0
2k
Deep Learning Hot Dog Detector
lunardog
0
260
Finding beans in burgers: paper reading notes
lunardog
0
1.5k
Kelner: Serve Your Models
lunardog
0
120
Image Analysis at Cookpad
lunardog
1
1.7k
Kelner: serve your models
lunardog
1
380
Cooking with Food Photos
lunardog
0
6.3k
Other Decks in Research
See All in Research
【緊急警告】日本の未来設計図 ~沈没か、再生か。国民と断行するラストチャンス~
yuutakasan
0
140
Combinatorial Search with Generators
kei18
0
350
SSII2025 [SS2] 横浜DeNAベイスターズの躍進を支えたAIプロダクト
ssii
PRO
7
3.6k
Ad-DS Paper Circle #1
ykaneko1992
0
5.6k
(NULLCON Goa 2025)Windows Keylogger Detection: Targeting Past and Present Keylogging Techniques
asuna_jp
2
540
2025年度 生成AIの使い方/接し方
hkefka385
1
710
定性データ、どう活かす? 〜定性データのための分析基盤、はじめました〜 / How to utilize qualitative data? ~We have launched an analysis platform for qualitative data~
kaminashi
6
1.1k
Computational OT #4 - Gradient flow and diffusion models
gpeyre
0
310
引力・斥力を制御可能なランダム部分集合の確率分布
wasyro
0
180
Transparency to sustain open science infrastructure - Printemps Couperin
mlarrieu
1
190
データサイエンティストの採用に関するアンケート
datascientistsociety
PRO
0
1k
Vision And Languageモデルにおける異なるドメインでの継続事前学習が性能に与える影響の検証 / YANS2024
sansan_randd
1
110
Featured
See All Featured
It's Worth the Effort
3n
185
28k
A Modern Web Designer's Workflow
chriscoyier
695
190k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Build The Right Thing And Hit Your Dates
maggiecrowley
36
2.8k
Agile that works and the tools we love
rasmusluckow
329
21k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
35
2.4k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
48
2.9k
Statistics for Hackers
jakevdp
799
220k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
46
9.6k
Java REST API Framework Comparison - PWX 2021
mraible
31
8.7k
Transcript
Towards Realistic Predictors Pei Wang and Nuno Vasconcelos Statistical and
Visual Computing Lab, UC San Diego 第49回 コンピュータビジョン勉強会@関東 2018.10.20 @_lunardog_ http://openaccess.thecvf.com/content_ECCV_2018/papers/Pei_Wang_Towards_Realistic_Predictors_ECCV_2018_paper.pdf
自己紹介 • レシェックと呼んでください • ポーランド出身 • 2010年から日本在住 • 2016年からクックパッドに勤務 •
ロボットとタイムワープのSFが好き • セルフィーが下手
None
None
None
None
Towards Realistic Predictors Pei Wang and Nuno Vasconcelos Statistical and
Visual Computing Lab, UC San Diego http://openaccess.thecvf.com/content_ECCV_2018/papers/Pei_Wang_Towards_Realistic_Predictors_ECCV_2018_paper.pdf
Realisticとは? らっかんてき 楽観的 optimistic ひかんてき 悲観的 pessimistic きゃっかんてき 客観的 objective,
realistic しゅかんてき 主観的 subjective, realistic
https://snappygoat.com/
https://snappygoat.com/
ぶんるいき 分類器 料理・非料理の分類器 料理 人間 動物 植物 ... その他
None
None
None
None
None
None
簡単な画像だけで学習
None
None
None
どれが難しいか
DLによるHardness Predictor HP-Net 難しさ
ぶんるいき 分類器 HP-Net DLによるHardness Predictor
難しさのPredictor (HP-Net) の損失 bi y s e t y s
u w r e s ma c mi zi t K l a k-Le b di g e b en t di r i n d a m i m n = 1 − p c
分類器の損失 we t ro -en p ma h er p
e (la r ) mo po n , w i as e m s (lo s) ar en s or c
ぶんるいき 分類器 HP-Net 学習 1. train classifier F and HP-Net
S jointly on training set D 2. run S on D and eliminate hard examples, to create realistic training set D′ 3. learn realistic classifier F′ on D′, with S fixed 4. output pair S, F′ 5. GOTO 1 D F S
confidence scores だけでは不十分?
None
難しさ推定の 進歩
2つのモデルは必要か?
ぶんるいき 分類器 + HP-Net +
None
Fine-tune は必要か?
C - normal classifier F - realistic predictor without fine-tuning
(just rejection) F’ - realistic predictor, fine-tuned on samples accepted by HP-Net
None
まとめ • 難しい画像を時々スキップしてもいい • スキップしないといけない時もある! • GANのようなHP-Netのアーキテクチャー を使って、難しさの推定ができる • そうしたら、分類の精度もよくなる
• HP-Netは分類器と一緒に学習させたほうがいい • HP-Netは分類器と別のモデルにしたほうがいい
https://ja.wikipedia.org/wiki/2001年宇宙の旅 https://matome.naver.jp/odai/2142440452176902701 うちゅうのたび 2001年宇宙の旅 『2001年宇宙の旅』(にせんいちねんうちゅうのた び、原題:2001: A Space Odyssey)は、アーサー・C・ クラークとスタンリー・キューブリックのアイデアを
まとめたストーリーに基いて製作された、SF映画 およびSF小説である。映画版はキューブリックが 監督・脚本を担当し、1968年4月6日にアメリカで 公開された。小説版は同年6月にハードカバー版 としてアメリカで出版されている。
I’m sorry, Dave. I’m afraid I can’t do that. Open
the pod bay doors, HAL! ドアを開けて、HAL!
The END