Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Towards Realistic Predictors
Search
Leszek Rybicki
October 20, 2018
Research
1
2.1k
Towards Realistic Predictors
コンピュータビジョンのトップカンファレンスの一つである 「European Conference on Computer Vision (ECCV) 2018」の論文読み会です。
Leszek Rybicki
October 20, 2018
Tweet
Share
More Decks by Leszek Rybicki
See All by Leszek Rybicki
Let's talk about Fakes
lunardog
0
120
How to Patch Image Classifiers
lunardog
0
1.9k
Towards Realistic Predictors - EN
lunardog
0
1.8k
Deep Learning Hot Dog Detector
lunardog
0
240
Finding beans in burgers: paper reading notes
lunardog
0
1.4k
Kelner: Serve Your Models
lunardog
0
100
Image Analysis at Cookpad
lunardog
1
1.6k
Kelner: serve your models
lunardog
1
350
Cooking with Food Photos
lunardog
0
6.1k
Other Decks in Research
See All in Research
情報処理学会関西支部2024年度定期講演会「自然言語処理と大規模言語モデルの基礎」
ksudoh
10
2.5k
20241115都市交通決起集会 趣旨説明・熊本事例紹介
trafficbrain
0
1k
移動ビッグデータに基づく地理情報の埋め込みベクトル化
tam1110
0
240
2038年問題が思ったよりヤバい。検出ツールを作って脅威性評価してみた論文 | Kansai Open Forum 2024
ran350
8
3.8k
The Economics of Platforms 輪読会 第1章
tomonatu8
0
150
Weekly AI Agents News! 11月号 プロダクト/ニュースのアーカイブ
masatoto
0
300
ベイズ的方法に基づく統計的因果推論の基礎
holyshun
0
820
PostgreSQLにおける分散トレーシングの現在 - 第50回PostgreSQLアンカンファレンス
seinoyu
0
250
The many faces of AI and the role of mathematics
gpeyre
1
1.7k
リモートワークにおけるパッシブ疲労
matsumoto_r
PRO
6
5k
AWS 音声基盤モデル トーク解析AI MiiTelの音声処理について
ken57
0
140
メタヒューリスティクスに基づく汎用線形整数計画ソルバーの開発
snowberryfield
3
780
Featured
See All Featured
Optimizing for Happiness
mojombo
376
70k
Navigating Team Friction
lara
183
15k
YesSQL, Process and Tooling at Scale
rocio
172
14k
How to train your dragon (web standard)
notwaldorf
91
5.9k
Product Roadmaps are Hard
iamctodd
PRO
50
11k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
10
510
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
7k
It's Worth the Effort
3n
184
28k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Java REST API Framework Comparison - PWX 2021
mraible
29
8.4k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Facilitating Awesome Meetings
lara
52
6.2k
Transcript
Towards Realistic Predictors Pei Wang and Nuno Vasconcelos Statistical and
Visual Computing Lab, UC San Diego 第49回 コンピュータビジョン勉強会@関東 2018.10.20 @_lunardog_ http://openaccess.thecvf.com/content_ECCV_2018/papers/Pei_Wang_Towards_Realistic_Predictors_ECCV_2018_paper.pdf
自己紹介 • レシェックと呼んでください • ポーランド出身 • 2010年から日本在住 • 2016年からクックパッドに勤務 •
ロボットとタイムワープのSFが好き • セルフィーが下手
None
None
None
None
Towards Realistic Predictors Pei Wang and Nuno Vasconcelos Statistical and
Visual Computing Lab, UC San Diego http://openaccess.thecvf.com/content_ECCV_2018/papers/Pei_Wang_Towards_Realistic_Predictors_ECCV_2018_paper.pdf
Realisticとは? らっかんてき 楽観的 optimistic ひかんてき 悲観的 pessimistic きゃっかんてき 客観的 objective,
realistic しゅかんてき 主観的 subjective, realistic
https://snappygoat.com/
https://snappygoat.com/
ぶんるいき 分類器 料理・非料理の分類器 料理 人間 動物 植物 ... その他
None
None
None
None
None
None
簡単な画像だけで学習
None
None
None
どれが難しいか
DLによるHardness Predictor HP-Net 難しさ
ぶんるいき 分類器 HP-Net DLによるHardness Predictor
難しさのPredictor (HP-Net) の損失 bi y s e t y s
u w r e s ma c mi zi t K l a k-Le b di g e b en t di r i n d a m i m n = 1 − p c
分類器の損失 we t ro -en p ma h er p
e (la r ) mo po n , w i as e m s (lo s) ar en s or c
ぶんるいき 分類器 HP-Net 学習 1. train classifier F and HP-Net
S jointly on training set D 2. run S on D and eliminate hard examples, to create realistic training set D′ 3. learn realistic classifier F′ on D′, with S fixed 4. output pair S, F′ 5. GOTO 1 D F S
confidence scores だけでは不十分?
None
難しさ推定の 進歩
2つのモデルは必要か?
ぶんるいき 分類器 + HP-Net +
None
Fine-tune は必要か?
C - normal classifier F - realistic predictor without fine-tuning
(just rejection) F’ - realistic predictor, fine-tuned on samples accepted by HP-Net
None
まとめ • 難しい画像を時々スキップしてもいい • スキップしないといけない時もある! • GANのようなHP-Netのアーキテクチャー を使って、難しさの推定ができる • そうしたら、分類の精度もよくなる
• HP-Netは分類器と一緒に学習させたほうがいい • HP-Netは分類器と別のモデルにしたほうがいい
https://ja.wikipedia.org/wiki/2001年宇宙の旅 https://matome.naver.jp/odai/2142440452176902701 うちゅうのたび 2001年宇宙の旅 『2001年宇宙の旅』(にせんいちねんうちゅうのた び、原題:2001: A Space Odyssey)は、アーサー・C・ クラークとスタンリー・キューブリックのアイデアを
まとめたストーリーに基いて製作された、SF映画 およびSF小説である。映画版はキューブリックが 監督・脚本を担当し、1968年4月6日にアメリカで 公開された。小説版は同年6月にハードカバー版 としてアメリカで出版されている。
I’m sorry, Dave. I’m afraid I can’t do that. Open
the pod bay doors, HAL! ドアを開けて、HAL!
The END