Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Towards Realistic Predictors
Search
Leszek Rybicki
October 20, 2018
Research
1
2k
Towards Realistic Predictors
コンピュータビジョンのトップカンファレンスの一つである 「European Conference on Computer Vision (ECCV) 2018」の論文読み会です。
Leszek Rybicki
October 20, 2018
Tweet
Share
More Decks by Leszek Rybicki
See All by Leszek Rybicki
Let's talk about Fakes
lunardog
0
110
How to Patch Image Classifiers
lunardog
0
1.7k
Towards Realistic Predictors - EN
lunardog
0
1.6k
Deep Learning Hot Dog Detector
lunardog
0
230
Finding beans in burgers: paper reading notes
lunardog
0
1.3k
Kelner: Serve Your Models
lunardog
0
100
Image Analysis at Cookpad
lunardog
1
1.6k
Kelner: serve your models
lunardog
1
340
Cooking with Food Photos
lunardog
0
6k
Other Decks in Research
See All in Research
Neural Fieldの紹介
nnchiba
1
400
Geospecific View Generation - Geometry-Context Aware High-resolution Ground View Inference from Satellite Views
satai
2
130
国際会議ACL2024参加報告
chemical_tree
1
350
Whoisの闇
hirachan
3
160
Tietovuoto Social Design Agency (SDA) -trollitehtaasta
hponka
0
3k
ECCV2024読み会: Minimalist Vision with Freeform Pixels
hsmtta
1
300
ソフトウェア研究における脅威モデリング
laysakura
0
920
ニュースメディアにおける事前学習済みモデルの可能性と課題 / IBIS2024
upura
3
680
The many faces of AI and the role of mathematics
gpeyre
1
1.4k
12
0325
0
190
メールからの名刺情報抽出におけるLLM活用 / Use of LLM in extracting business card information from e-mails
sansan_randd
2
260
2024/10/30 産総研AIセミナー発表資料
keisuke198619
1
380
Featured
See All Featured
How to train your dragon (web standard)
notwaldorf
88
5.7k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
330
21k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
5
440
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
Scaling GitHub
holman
458
140k
YesSQL, Process and Tooling at Scale
rocio
169
14k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
229
52k
No one is an island. Learnings from fostering a developers community.
thoeni
19
3k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
17
2.2k
Being A Developer After 40
akosma
87
590k
How to Ace a Technical Interview
jacobian
276
23k
A Modern Web Designer's Workflow
chriscoyier
693
190k
Transcript
Towards Realistic Predictors Pei Wang and Nuno Vasconcelos Statistical and
Visual Computing Lab, UC San Diego 第49回 コンピュータビジョン勉強会@関東 2018.10.20 @_lunardog_ http://openaccess.thecvf.com/content_ECCV_2018/papers/Pei_Wang_Towards_Realistic_Predictors_ECCV_2018_paper.pdf
自己紹介 • レシェックと呼んでください • ポーランド出身 • 2010年から日本在住 • 2016年からクックパッドに勤務 •
ロボットとタイムワープのSFが好き • セルフィーが下手
None
None
None
None
Towards Realistic Predictors Pei Wang and Nuno Vasconcelos Statistical and
Visual Computing Lab, UC San Diego http://openaccess.thecvf.com/content_ECCV_2018/papers/Pei_Wang_Towards_Realistic_Predictors_ECCV_2018_paper.pdf
Realisticとは? らっかんてき 楽観的 optimistic ひかんてき 悲観的 pessimistic きゃっかんてき 客観的 objective,
realistic しゅかんてき 主観的 subjective, realistic
https://snappygoat.com/
https://snappygoat.com/
ぶんるいき 分類器 料理・非料理の分類器 料理 人間 動物 植物 ... その他
None
None
None
None
None
None
簡単な画像だけで学習
None
None
None
どれが難しいか
DLによるHardness Predictor HP-Net 難しさ
ぶんるいき 分類器 HP-Net DLによるHardness Predictor
難しさのPredictor (HP-Net) の損失 bi y s e t y s
u w r e s ma c mi zi t K l a k-Le b di g e b en t di r i n d a m i m n = 1 − p c
分類器の損失 we t ro -en p ma h er p
e (la r ) mo po n , w i as e m s (lo s) ar en s or c
ぶんるいき 分類器 HP-Net 学習 1. train classifier F and HP-Net
S jointly on training set D 2. run S on D and eliminate hard examples, to create realistic training set D′ 3. learn realistic classifier F′ on D′, with S fixed 4. output pair S, F′ 5. GOTO 1 D F S
confidence scores だけでは不十分?
None
難しさ推定の 進歩
2つのモデルは必要か?
ぶんるいき 分類器 + HP-Net +
None
Fine-tune は必要か?
C - normal classifier F - realistic predictor without fine-tuning
(just rejection) F’ - realistic predictor, fine-tuned on samples accepted by HP-Net
None
まとめ • 難しい画像を時々スキップしてもいい • スキップしないといけない時もある! • GANのようなHP-Netのアーキテクチャー を使って、難しさの推定ができる • そうしたら、分類の精度もよくなる
• HP-Netは分類器と一緒に学習させたほうがいい • HP-Netは分類器と別のモデルにしたほうがいい
https://ja.wikipedia.org/wiki/2001年宇宙の旅 https://matome.naver.jp/odai/2142440452176902701 うちゅうのたび 2001年宇宙の旅 『2001年宇宙の旅』(にせんいちねんうちゅうのた び、原題:2001: A Space Odyssey)は、アーサー・C・ クラークとスタンリー・キューブリックのアイデアを
まとめたストーリーに基いて製作された、SF映画 およびSF小説である。映画版はキューブリックが 監督・脚本を担当し、1968年4月6日にアメリカで 公開された。小説版は同年6月にハードカバー版 としてアメリカで出版されている。
I’m sorry, Dave. I’m afraid I can’t do that. Open
the pod bay doors, HAL! ドアを開けて、HAL!
The END