Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Towards Realistic Predictors
Search
Leszek Rybicki
October 20, 2018
Research
1
2.2k
Towards Realistic Predictors
コンピュータビジョンのトップカンファレンスの一つである 「European Conference on Computer Vision (ECCV) 2018」の論文読み会です。
Leszek Rybicki
October 20, 2018
Tweet
Share
More Decks by Leszek Rybicki
See All by Leszek Rybicki
Let's talk about Fakes
lunardog
0
130
How to Patch Image Classifiers
lunardog
0
2.1k
Towards Realistic Predictors - EN
lunardog
0
2k
Deep Learning Hot Dog Detector
lunardog
0
260
Finding beans in burgers: paper reading notes
lunardog
0
1.5k
Kelner: Serve Your Models
lunardog
0
120
Image Analysis at Cookpad
lunardog
1
1.7k
Kelner: serve your models
lunardog
1
380
Cooking with Food Photos
lunardog
0
6.3k
Other Decks in Research
See All in Research
電力システム最適化入門
mickey_kubo
1
690
Streamlit 総合解説 ~ PythonistaのためのWebアプリ開発 ~
mickey_kubo
1
950
Mechanistic Interpretability:解釈可能性研究の新たな潮流
koshiro_aoki
1
310
ウッドスタックチャン:木材を用いた小型エージェントロボットの開発と印象評価 / ec75-sato
yumulab
1
420
電通総研の生成AI・エージェントの取り組みエンジニアリング業務向けAI活用事例紹介
isidaitc
1
660
最適化と機械学習による問題解決
mickey_kubo
0
140
Adaptive fusion of multi-modal remote sensing data for optimal sub-field crop yield prediction
satai
3
220
Ad-DS Paper Circle #1
ykaneko1992
0
5.6k
Submeter-level land cover mapping of Japan
satai
3
130
(NULLCON Goa 2025)Windows Keylogger Detection: Targeting Past and Present Keylogging Techniques
asuna_jp
2
540
利用シーンを意識した推薦システム〜SpotifyとAmazonの事例から〜
kuri8ive
1
210
NLP2025参加報告会 LT資料
hargon24
1
320
Featured
See All Featured
The Language of Interfaces
destraynor
158
25k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
35
2.4k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Reflections from 52 weeks, 52 projects
jeffersonlam
351
20k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
8
690
Become a Pro
speakerdeck
PRO
29
5.4k
A Modern Web Designer's Workflow
chriscoyier
695
190k
Optimising Largest Contentful Paint
csswizardry
37
3.3k
A designer walks into a library…
pauljervisheath
207
24k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
138
34k
Visualization
eitanlees
146
16k
Transcript
Towards Realistic Predictors Pei Wang and Nuno Vasconcelos Statistical and
Visual Computing Lab, UC San Diego 第49回 コンピュータビジョン勉強会@関東 2018.10.20 @_lunardog_ http://openaccess.thecvf.com/content_ECCV_2018/papers/Pei_Wang_Towards_Realistic_Predictors_ECCV_2018_paper.pdf
自己紹介 • レシェックと呼んでください • ポーランド出身 • 2010年から日本在住 • 2016年からクックパッドに勤務 •
ロボットとタイムワープのSFが好き • セルフィーが下手
None
None
None
None
Towards Realistic Predictors Pei Wang and Nuno Vasconcelos Statistical and
Visual Computing Lab, UC San Diego http://openaccess.thecvf.com/content_ECCV_2018/papers/Pei_Wang_Towards_Realistic_Predictors_ECCV_2018_paper.pdf
Realisticとは? らっかんてき 楽観的 optimistic ひかんてき 悲観的 pessimistic きゃっかんてき 客観的 objective,
realistic しゅかんてき 主観的 subjective, realistic
https://snappygoat.com/
https://snappygoat.com/
ぶんるいき 分類器 料理・非料理の分類器 料理 人間 動物 植物 ... その他
None
None
None
None
None
None
簡単な画像だけで学習
None
None
None
どれが難しいか
DLによるHardness Predictor HP-Net 難しさ
ぶんるいき 分類器 HP-Net DLによるHardness Predictor
難しさのPredictor (HP-Net) の損失 bi y s e t y s
u w r e s ma c mi zi t K l a k-Le b di g e b en t di r i n d a m i m n = 1 − p c
分類器の損失 we t ro -en p ma h er p
e (la r ) mo po n , w i as e m s (lo s) ar en s or c
ぶんるいき 分類器 HP-Net 学習 1. train classifier F and HP-Net
S jointly on training set D 2. run S on D and eliminate hard examples, to create realistic training set D′ 3. learn realistic classifier F′ on D′, with S fixed 4. output pair S, F′ 5. GOTO 1 D F S
confidence scores だけでは不十分?
None
難しさ推定の 進歩
2つのモデルは必要か?
ぶんるいき 分類器 + HP-Net +
None
Fine-tune は必要か?
C - normal classifier F - realistic predictor without fine-tuning
(just rejection) F’ - realistic predictor, fine-tuned on samples accepted by HP-Net
None
まとめ • 難しい画像を時々スキップしてもいい • スキップしないといけない時もある! • GANのようなHP-Netのアーキテクチャー を使って、難しさの推定ができる • そうしたら、分類の精度もよくなる
• HP-Netは分類器と一緒に学習させたほうがいい • HP-Netは分類器と別のモデルにしたほうがいい
https://ja.wikipedia.org/wiki/2001年宇宙の旅 https://matome.naver.jp/odai/2142440452176902701 うちゅうのたび 2001年宇宙の旅 『2001年宇宙の旅』(にせんいちねんうちゅうのた び、原題:2001: A Space Odyssey)は、アーサー・C・ クラークとスタンリー・キューブリックのアイデアを
まとめたストーリーに基いて製作された、SF映画 およびSF小説である。映画版はキューブリックが 監督・脚本を担当し、1968年4月6日にアメリカで 公開された。小説版は同年6月にハードカバー版 としてアメリカで出版されている。
I’m sorry, Dave. I’m afraid I can’t do that. Open
the pod bay doors, HAL! ドアを開けて、HAL!
The END