Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Towards Realistic Predictors
Search
Leszek Rybicki
October 20, 2018
Research
1
2.2k
Towards Realistic Predictors
コンピュータビジョンのトップカンファレンスの一つである 「European Conference on Computer Vision (ECCV) 2018」の論文読み会です。
Leszek Rybicki
October 20, 2018
Tweet
Share
More Decks by Leszek Rybicki
See All by Leszek Rybicki
Let's talk about Fakes
lunardog
0
130
How to Patch Image Classifiers
lunardog
0
2.2k
Towards Realistic Predictors - EN
lunardog
0
2.1k
Deep Learning Hot Dog Detector
lunardog
0
270
Finding beans in burgers: paper reading notes
lunardog
0
1.6k
Kelner: Serve Your Models
lunardog
0
120
Image Analysis at Cookpad
lunardog
1
1.8k
Kelner: serve your models
lunardog
1
380
Cooking with Food Photos
lunardog
0
6.4k
Other Decks in Research
See All in Research
Type Theory as a Formal Basis of Natural Language Semantics
daikimatsuoka
1
290
言語モデルの地図:確率分布と情報幾何による類似性の可視化
shimosan
5
1.4k
SegEarth-OV: Towards Training-Free Open-Vocabulary Segmentation for Remote Sensing Images
satai
3
170
cvpaper.challenge 10年の軌跡 / cvpaper.challenge a decade-long journey
gatheluck
3
310
SSII2025 [SS1] レンズレスカメラ
ssii
PRO
2
1.1k
IMC の細かすぎる話 2025
smly
2
620
カスタマーサクセスの視点からAWS Summitの展示を考える~製品開発で活用できる勘所~
masakiokuda
2
190
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
160
まずはここから:Overleaf共同執筆・CopilotでAIコーディング入門・Codespacesで独立環境
matsui_528
2
480
電力システム最適化入門
mickey_kubo
1
910
[輪講] SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features
nk35jk
2
980
多言語カスタマーインタビューの“壁”を越える~PMと生成AIの共創~ 株式会社ジグザグ 松野 亘
watarumatsuno
0
120
Featured
See All Featured
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.5k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
111
20k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Reflections from 52 weeks, 52 projects
jeffersonlam
352
21k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
188
55k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.5k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
840
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
131
19k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
358
30k
Building Better People: How to give real-time feedback that sticks.
wjessup
368
19k
Code Reviewing Like a Champion
maltzj
525
40k
Transcript
Towards Realistic Predictors Pei Wang and Nuno Vasconcelos Statistical and
Visual Computing Lab, UC San Diego 第49回 コンピュータビジョン勉強会@関東 2018.10.20 @_lunardog_ http://openaccess.thecvf.com/content_ECCV_2018/papers/Pei_Wang_Towards_Realistic_Predictors_ECCV_2018_paper.pdf
自己紹介 • レシェックと呼んでください • ポーランド出身 • 2010年から日本在住 • 2016年からクックパッドに勤務 •
ロボットとタイムワープのSFが好き • セルフィーが下手
None
None
None
None
Towards Realistic Predictors Pei Wang and Nuno Vasconcelos Statistical and
Visual Computing Lab, UC San Diego http://openaccess.thecvf.com/content_ECCV_2018/papers/Pei_Wang_Towards_Realistic_Predictors_ECCV_2018_paper.pdf
Realisticとは? らっかんてき 楽観的 optimistic ひかんてき 悲観的 pessimistic きゃっかんてき 客観的 objective,
realistic しゅかんてき 主観的 subjective, realistic
https://snappygoat.com/
https://snappygoat.com/
ぶんるいき 分類器 料理・非料理の分類器 料理 人間 動物 植物 ... その他
None
None
None
None
None
None
簡単な画像だけで学習
None
None
None
どれが難しいか
DLによるHardness Predictor HP-Net 難しさ
ぶんるいき 分類器 HP-Net DLによるHardness Predictor
難しさのPredictor (HP-Net) の損失 bi y s e t y s
u w r e s ma c mi zi t K l a k-Le b di g e b en t di r i n d a m i m n = 1 − p c
分類器の損失 we t ro -en p ma h er p
e (la r ) mo po n , w i as e m s (lo s) ar en s or c
ぶんるいき 分類器 HP-Net 学習 1. train classifier F and HP-Net
S jointly on training set D 2. run S on D and eliminate hard examples, to create realistic training set D′ 3. learn realistic classifier F′ on D′, with S fixed 4. output pair S, F′ 5. GOTO 1 D F S
confidence scores だけでは不十分?
None
難しさ推定の 進歩
2つのモデルは必要か?
ぶんるいき 分類器 + HP-Net +
None
Fine-tune は必要か?
C - normal classifier F - realistic predictor without fine-tuning
(just rejection) F’ - realistic predictor, fine-tuned on samples accepted by HP-Net
None
まとめ • 難しい画像を時々スキップしてもいい • スキップしないといけない時もある! • GANのようなHP-Netのアーキテクチャー を使って、難しさの推定ができる • そうしたら、分類の精度もよくなる
• HP-Netは分類器と一緒に学習させたほうがいい • HP-Netは分類器と別のモデルにしたほうがいい
https://ja.wikipedia.org/wiki/2001年宇宙の旅 https://matome.naver.jp/odai/2142440452176902701 うちゅうのたび 2001年宇宙の旅 『2001年宇宙の旅』(にせんいちねんうちゅうのた び、原題:2001: A Space Odyssey)は、アーサー・C・ クラークとスタンリー・キューブリックのアイデアを
まとめたストーリーに基いて製作された、SF映画 およびSF小説である。映画版はキューブリックが 監督・脚本を担当し、1968年4月6日にアメリカで 公開された。小説版は同年6月にハードカバー版 としてアメリカで出版されている。
I’m sorry, Dave. I’m afraid I can’t do that. Open
the pod bay doors, HAL! ドアを開けて、HAL!
The END