Save 37% off PRO during our Black Friday Sale! »

時系列分析と状態空間モデリングの基礎 / Foundations of Time Series Analysis and State Space Models 0

02a84f9b8af46c6c3ef7c4b1f9bbb56f?s=47 masso
December 17, 2020

時系列分析と状態空間モデリングの基礎 / Foundations of Time Series Analysis and State Space Models 0

02a84f9b8af46c6c3ef7c4b1f9bbb56f?s=128

masso

December 17, 2020
Tweet

Transcript

  1. 基礎からわかる時系列分析 輪読会 第5回 〜ちょっと⽴ち⽌まって基本を学ぶ回〜

  2. すいません、違う本の内容を紹介させてください (エクストリームすぎるだろw というツッコミ待ち) ✋

  3. なぜ別の本を持ち出したか • 時系列分析の基本がわからなすぎて前回ついて いけなかった • 『基礎からわかる時系列分析』の場合、 AR/MA/ARMA/ARIMAあたりを丁寧に解説して いるところがなかった(そこを知りたい…) • 今回紹介する本は、そこんとこを優しく解説し

    てくれてた
  4. お品書き ① 時系列データを表現する上での基本 ② データの⽣成過程〜定常過程・⾮定常過程 ③ ARIMAモデルとはなんだ〜有⾺さんじゃないよ

  5. 時系列データを表現する上での 基本 『時系列分析と状態空間モデルの基礎』1部2章付近

  6. 学ぶ⽤語⼀覧 • ⾃⼰相関とコレログラム • 季節成分・周期成分 • トレンド • 外因性 •

    ホワイトノイズ
  7. ⾃⼰相関とコレログラム ⾃⼰相関 過去の⾃分との相関。 時系列じゃない場合は、説 明変数XとYの相関Cov(x,y) とか考えるけど、時系列は、 ⾃分との相関Cov(Xt, Xt-1) を考える点が特徴といえる ⾃⼰相関係数(ACF)と

    偏⾃⼰相関係数(PACF)がある コレログラム 何時点前との⾃⼰相関が強 いのかを判断するのに使わ れる作図⽅法
  8. 季節成分・周期成分 • 常にN時点前のデータと強い相関がある場合、 周期性があると⾔える • 単に、「⾃⼰相関がある」と捉えるだけで終わ らせてはいけない • 特に1年単位の周期があるもの(12ヶ⽉前と 強い相関がある)ものを季節性と呼ぶ

    • 他にも週単位、⽇単位の周期性もある
  9. トレンド • 例えば、「毎⽉の売上が20万円ずつ上昇する ような右肩上がりの業績データ」であれば、正 のトレンドがあるなどという • もう少し⼀般的な表現をするなら、「中⻑期的 なデータの単調変化(増加・減少)」とも⾔え るかも

  10. 外因性 • 外部の要因によるもの、例えば「近くでイベン トが⾏われたので売上が際⽴って⾼い⽇」の データなどは、外因性によるデータの振る舞い といえる • もう少し⼀般的な表現をするなら、「分析対象 としている『系』の外のイベントによる影響」 と⾔えそう

  11. ホワイトノイズ • 純粋なノイズ。予測不可能と考えてよい。 • 具体的な条件は – 期待値が0 & 分散が⼀定 &

    ⾃⼰相関が0 • よく使われるのは、平均0で分散σ2の正規分布
  12. 時系列データの構造 時系列データ = 短期の⾃⼰相関 + 周期的変動(季節性含む) + トレンド + 外因性

    + ホワイトノイズ
  13. データの⽣成過程 〜定常過程・⾮定常過程 『時系列分析と状態空間モデルの基礎』2部2章付近

  14. 特徴と定義 定常過程 ⾮定常過程 • 分析しやすい • 時点によらず期待値が⼀定 & 時点に よらず⾃⼰共分散・⾃⼰相関が時点差

    のみに依存 • 分析しにくい • 定常過程以外の全て(現実はこっちが 多い)
  15. 定常過程が分析しやすい理由 • 基本統計量は以下のように表せる • これが時点によって変わらないので、ある区間(例えば1ヶ ⽉分)のデータから算出した期待値や分散がそのまま「特定 時点の期待値や分散の推定量」とみなせる • 定常過程データに対して(後述の)ARMAモデルが⾼い説明 能⼒を持つ

  16. ⾮定常過程のデータを扱いやすく変換する • 差分をとる→トレンドを消せる – d階差分をとると定常過程に変化するものをd次和分過程という

  17. ⾮定常過程のデータを扱いやすく変換する • 対数をとる→和が積になる。解釈内容が変わる。 時系列データ=周期的変動+トレンド+ホワイトノイズ log時系列データ=log周期的変動+logトレンド+logホワイトノイズ log(時系列データ)=log(周期的変動×トレンド×ホワイトノイズ)

  18. ARIMAモデルとはなんだ 〜有⾺さんじゃないよ 『時系列分析と状態空間モデルの基礎』2部3・4章付近

  19. 結論 • AR(⾃⼰回帰)モデル • MA(移動平均)モデル • I(d)︓d次和分過程 • ARIMA=AR+I(d)+MA

  20. ⾃⼰回帰モデル • AR(⾃⼰回帰)モデル • MA(移動平均)モデル • I(d)︓d次和分過程 • ARIMA=AR+I(d)+MA

  21. 移動平均モデル • AR(⾃⼰回帰)モデル • MA(移動平均)モデル • I(d)︓d次和分過程 • ARIMA=AR+I(d)+MA 係数が1より⼩のAR(1)

    はMA(∞)に等しい という関係がある
  22. ARMA • AR + MA(⾃⼰回帰移動平均)モデル • p次のARモデルとq次のMAモデルはARMA(p,q) • ⾃⼰相関をより柔軟に表現できる

  23. d次和分過程 • AR(⾃⼰回帰)モデル • MA(移動平均)モデル • I(d)︓d次和分過程 • ARIMA=AR+I(d)+MA d階差分するとはじめて定常過程になる

    ⾮定常過程のこと 何階差分をとれば⼗分なのかは単位根検定によっ て判断する
  24. ARIMAモデル • AR(⾃⼰回帰)モデル • MA(移動平均)モデル • I(d)︓d次和分過程 • ARIMA=AR+I(d)+MA d次和分過程のデータをd階差分して、

    定常過程に変換した上で、ARMAを適⽤する 次数p,d,qを⽤いてARIMA(p,d,q)と表現する
  25. ARIMAの拡張 • SARIMA モデル=ARIMA+Seasonal(季節性) • ARIMAX モデル=ARIMA+Exogenous(外因性)

  26. SARIMA • SARIMA モデル=ARIMA+Seasonal(季節性) • ARIMAX モデル=ARIMA+Exogenous(外因性) ⽉単位のデータを例に取ると データを前年同期ごとにとり、「去年との相関関係」をモ デル化する

    1周期がsのデータにおいて、ARIMAの次数(p,d,q)、 季節性の次数(P,D,Q)として、SARIMA(p,d,q)(P,D,Q)[s] と表現する
  27. ARIMAX • SARIMA モデル=ARIMA+Seasonal(季節性) • ARIMAX モデル=ARIMA+Exogenous(外因性) 回帰の要素をいれたARIMAといえる。 ある店舗のの売上が、近くで⼤きなイベントが開催され たために急激に増加した場合を考慮するときとか

    また、曜⽇や祝⽇の効果をモデルに組み込むときも使われ ることがある。SARIMAと異なりダミー変数(祝⽇フラグ とか)で様々なパターンが作れるので、季節性のデータで もARIMAXでモデル化した⽅が楽なときもある。
  28. まとめ

  29. 補⾜

  30. SARIMAの数式表現 結論 導出

  31. ARIMAXの数式表現