$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
わかりやすいパターン認識1章 / Pattern Recognition Manual Eas...
Search
masso
December 05, 2020
Science
0
190
わかりやすいパターン認識1章 / Pattern Recognition Manual Easy to understand SS 01
わかりやすいパターン認識のセルフ輪読会資料〜第一章
masso
December 05, 2020
Tweet
Share
More Decks by masso
See All by masso
Stacktrace for rs/zerolog users
masso
0
360
データ解釈学入門 第一部 / Data hermeneutics Part 1
masso
8
2.3k
時系列分析と状態空間モデリングの基礎 / Foundations of Time Series Analysis and State Space Models 0
masso
1
660
わかりやすいパターン認識2章 / Pattern Recognition Manual Easy to understand SS 02
masso
0
1.1k
分析環境紹介LT / the introduction of as my analysis env is
masso
0
140
データ解析のための統計モデリング入門6章 / Handbook-of-statistical-modeling-for-data-analysis-section6
masso
0
570
DLGが目指すコミュニティの形 / DLG Community Objective
masso
0
2.7k
PowerAutomateによる社員健康状態集計システム / Employee health status tabulation system with Power Automate
masso
0
1.6k
Other Decks in Science
See All in Science
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
170
データマイニング - コミュニティ発見
trycycle
PRO
0
190
データベース05: SQL(2/3) 結合質問
trycycle
PRO
0
860
デジタルアーカイブの教育利用促進を目指したメタデータLOD基盤に関する研究 / Research on a Metadata LOD Platform for Promoting Educational Uses of Digital Archives
masao
0
130
学術講演会中央大学学員会府中支部
tagtag
0
340
Collective Predictive Coding as a Unified Theory for the Socio-Cognitive Human Minds
tanichu
0
140
データベース14: B+木 & ハッシュ索引
trycycle
PRO
0
590
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
1
290
LayerXにおける業務の完全自動運転化に向けたAI技術活用事例 / layerx-ai-jsai2025
shimacos
2
21k
Hakonwa-Quaternion
hiranabe
1
160
次代のデータサイエンティストへ~スキルチェックリスト、タスクリスト更新~
datascientistsociety
PRO
2
21k
Agent開発フレームワークのOverviewとW&B Weaveとのインテグレーション
siyoo
0
400
Featured
See All Featured
Building Adaptive Systems
keathley
44
2.9k
sira's awesome portfolio website redesign presentation
elsirapls
0
89
Navigating the Design Leadership Dip - Product Design Week Design Leaders+ Conference 2024
apolaine
0
120
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
0
300
Design in an AI World
tapps
0
99
Lightning talk: Run Django tests with GitHub Actions
sabderemane
0
92
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
310
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.3k
Darren the Foodie - Storyboard
khoart
PRO
0
1.9k
Crafting Experiences
bethany
0
22
Designing for Timeless Needs
cassininazir
0
93
Digital Ethics as a Driver of Design Innovation
axbom
PRO
0
130
Transcript
わかりやすいパターン認識 第⼀章 パターン認識とは︖
パターン認識の定義 観測されたパターンを予め定められた複数 の概念(class)のうちの⼀つに対応させる 処理
パターン認識の事例 • ⼿書きのアルファベットを26クラスに対応させる • ⾳声データを五⼗⾳や単語に対応させる(⾳声認識) • ⼼電図波形から⼼臓の異常・正常状態を判定 構造化データ、⾮構造化データ(画像・⾃然⾔語・⾳声)に関わらず様々な分 野で「パターン認識」はある。
パターン認識の⼀般的な処理の流れ 1. 前処理 1. ノイズ除去 2. 正規化 2. 特徴抽出 1.
本質的な特徴のみ抽出 3. 識別 1. 辞書と照合 識別 認識
特徴ベクトルと特徴空間 • d個の特徴︓d次元特徴ベクトルx • クラス総数c︓クラス名ωc • 特徴ベクトルのはる空間=特徴空間 • 特徴空間じょうで、特徴ベクトルは、 クラスごとにかたまっているはずで、
それらの塊=クラスタ
⼿書き数字認識の例 (5x5メッシュ2値画像) • 最もシンプルには…225パターン • 中には数字に関係ないものもある – リジェクト領域 • リジェクト領域は2種類
– 「どこにも属さない」と「識別困難」 • 辞書作成は必須。辞書作成⾃体が、識別 処理に他ならないからである
⼿書き数字認識の例 (5x5メッシュ2値画像) • 全パターンは⾮現実的、代表パターンだけを記憶(≒識別辞 書に記録)する⽅法がある。 • 代表パターン=プロトタイプ • 各特徴ベクトルが、どのプロトタイプに最も近いかで判定す ることが多い
(Nearest Neighbor rule︓NN法/最近傍決定則) • より⼀般化すると、k-NN法。最も近いk個のプロトタイプを 選び、k個のうち最も多くが属しているクラスを判定結果とす るやりかた。
特徴空間の分割〜プロトタイプを設定する • 全数記憶⽅式 – 現実のデータをサンプリングし、全体をよく表すパ ターンを(識別のための代表パターンとしての)プ ロトタイプとする⽅式 – 【注】サンプリング結果はすべてを表すものではな い
• プロトタイプ⽅式→k-meansにつながる – 各クラスに対して、⼀つのパターンを選ぶという発 想 – クラスの重⼼位置を選ぶというのは、⾃然=k- means – クラスごとの代表パターン間の垂直⼆等分線(多次 元空間であれば、超平⾯)を決定境界という
終わり