Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
わかりやすいパターン認識1章 / Pattern Recognition Manual Eas...
Search
masso
December 05, 2020
Science
0
140
わかりやすいパターン認識1章 / Pattern Recognition Manual Easy to understand SS 01
わかりやすいパターン認識のセルフ輪読会資料〜第一章
masso
December 05, 2020
Tweet
Share
More Decks by masso
See All by masso
Stacktrace for rs/zerolog users
masso
0
170
データ解釈学入門 第一部 / Data hermeneutics Part 1
masso
8
2.1k
時系列分析と状態空間モデリングの基礎 / Foundations of Time Series Analysis and State Space Models 0
masso
0
520
わかりやすいパターン認識2章 / Pattern Recognition Manual Easy to understand SS 02
masso
0
780
分析環境紹介LT / the introduction of as my analysis env is
masso
0
100
データ解析のための統計モデリング入門6章 / Handbook-of-statistical-modeling-for-data-analysis-section6
masso
0
490
DLGが目指すコミュニティの形 / DLG Community Objective
masso
0
2.4k
PowerAutomateによる社員健康状態集計システム / Employee health status tabulation system with Power Automate
masso
0
1.4k
Other Decks in Science
See All in Science
マテリアルズ・インフォマティクスの先端で起きていること / What's Happening at the Cutting Edge of Materials Informatics
snhryt
1
130
Презентация программы бакалавриата СПбГУ "Искусственный интеллект и наука о данных"
dscs
0
720
Online Feedback Optimization
floriandoerfler
0
300
Презентация программы магистратуры СПбГУ "Искусственный интеллект и наука о данных"
dscs
0
390
Snowflake上でRを使う: RStudioセットアップとShinyアプリケーションのデプロイ
ktatsuya
0
420
構造設計のための3D生成AI-最新の取り組みと今後の展開-
kojinishiguchi
0
560
WeMeet Group - 採用資料
wemeet
0
3.2k
Boil Order
uni_of_nomi
0
120
生成AI による論文執筆サポートの手引き(ワークショップ) / A guide to supporting dissertation writing with generative AI (workshop)
ks91
PRO
0
250
ICRA2024 速報
rpc
3
5.2k
All-in-One Bioinformatics Platform Realized with Snowflake ~ From In Silico Drug Discovery, Disease Variant Analysis, to Single-Cell RNA-seq
ktatsuya
0
230
作業領域内の障害物を回避可能なバイナリマニピュレータの設計 / Design of binary manipulator avoiding obstacles in workspace
konakalab
0
160
Featured
See All Featured
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
10
720
Adopting Sorbet at Scale
ufuk
73
9.1k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
26
1.4k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.1k
Thoughts on Productivity
jonyablonski
67
4.3k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Keith and Marios Guide to Fast Websites
keithpitt
409
22k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
Agile that works and the tools we love
rasmusluckow
327
21k
How to Ace a Technical Interview
jacobian
276
23k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Transcript
わかりやすいパターン認識 第⼀章 パターン認識とは︖
パターン認識の定義 観測されたパターンを予め定められた複数 の概念(class)のうちの⼀つに対応させる 処理
パターン認識の事例 • ⼿書きのアルファベットを26クラスに対応させる • ⾳声データを五⼗⾳や単語に対応させる(⾳声認識) • ⼼電図波形から⼼臓の異常・正常状態を判定 構造化データ、⾮構造化データ(画像・⾃然⾔語・⾳声)に関わらず様々な分 野で「パターン認識」はある。
パターン認識の⼀般的な処理の流れ 1. 前処理 1. ノイズ除去 2. 正規化 2. 特徴抽出 1.
本質的な特徴のみ抽出 3. 識別 1. 辞書と照合 識別 認識
特徴ベクトルと特徴空間 • d個の特徴︓d次元特徴ベクトルx • クラス総数c︓クラス名ωc • 特徴ベクトルのはる空間=特徴空間 • 特徴空間じょうで、特徴ベクトルは、 クラスごとにかたまっているはずで、
それらの塊=クラスタ
⼿書き数字認識の例 (5x5メッシュ2値画像) • 最もシンプルには…225パターン • 中には数字に関係ないものもある – リジェクト領域 • リジェクト領域は2種類
– 「どこにも属さない」と「識別困難」 • 辞書作成は必須。辞書作成⾃体が、識別 処理に他ならないからである
⼿書き数字認識の例 (5x5メッシュ2値画像) • 全パターンは⾮現実的、代表パターンだけを記憶(≒識別辞 書に記録)する⽅法がある。 • 代表パターン=プロトタイプ • 各特徴ベクトルが、どのプロトタイプに最も近いかで判定す ることが多い
(Nearest Neighbor rule︓NN法/最近傍決定則) • より⼀般化すると、k-NN法。最も近いk個のプロトタイプを 選び、k個のうち最も多くが属しているクラスを判定結果とす るやりかた。
特徴空間の分割〜プロトタイプを設定する • 全数記憶⽅式 – 現実のデータをサンプリングし、全体をよく表すパ ターンを(識別のための代表パターンとしての)プ ロトタイプとする⽅式 – 【注】サンプリング結果はすべてを表すものではな い
• プロトタイプ⽅式→k-meansにつながる – 各クラスに対して、⼀つのパターンを選ぶという発 想 – クラスの重⼼位置を選ぶというのは、⾃然=k- means – クラスごとの代表パターン間の垂直⼆等分線(多次 元空間であれば、超平⾯)を決定境界という
終わり