Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
わかりやすいパターン認識1章 / Pattern Recognition Manual Eas...
Search
masso
December 05, 2020
Science
0
150
わかりやすいパターン認識1章 / Pattern Recognition Manual Easy to understand SS 01
わかりやすいパターン認識のセルフ輪読会資料〜第一章
masso
December 05, 2020
Tweet
Share
More Decks by masso
See All by masso
Stacktrace for rs/zerolog users
masso
0
220
データ解釈学入門 第一部 / Data hermeneutics Part 1
masso
8
2.1k
時系列分析と状態空間モデリングの基礎 / Foundations of Time Series Analysis and State Space Models 0
masso
0
550
わかりやすいパターン認識2章 / Pattern Recognition Manual Easy to understand SS 02
masso
0
870
分析環境紹介LT / the introduction of as my analysis env is
masso
0
110
データ解析のための統計モデリング入門6章 / Handbook-of-statistical-modeling-for-data-analysis-section6
masso
0
510
DLGが目指すコミュニティの形 / DLG Community Objective
masso
0
2.5k
PowerAutomateによる社員健康状態集計システム / Employee health status tabulation system with Power Automate
masso
0
1.4k
Other Decks in Science
See All in Science
重複排除・高速バックアップ・ランサムウェア対策 三拍子そろったExaGrid × Veeam連携セミナー
climbteam
0
190
2024-06-16-pydata_london
sofievl
0
600
Trend Classification of InSAR Displacement Time Series Using SAE–CNN
satai
3
140
山形とさくらんぼに関するレクチャー(YG-900)
07jp27
1
260
(論文読み)贈り物の交換による地位の競争と社会構造の変化 - 文化人類学への統計物理学的アプローチ -
__ymgc__
1
180
How were Quaternion discovered
kinakomoti321
2
1.2k
02_西村訓弘_プログラムディレクター_人口減少を機にひらく未来社会.pdf
sip3ristex
0
140
ウェーブレットおきもち講座
aikiriao
1
820
Transformers are Universal in Context Learners
gpeyre
0
720
All-in-One Bioinformatics Platform Realized with Snowflake ~ From In Silico Drug Discovery, Disease Variant Analysis, to Single-Cell RNA-seq
ktatsuya
0
310
3次元点群を利用した植物の葉の自動セグメンテーションについて
kentaitakura
2
900
ほたるのひかり/RayTracingCamp10
kugimasa
1
520
Featured
See All Featured
Become a Pro
speakerdeck
PRO
26
5.2k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
7k
Facilitating Awesome Meetings
lara
52
6.2k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.7k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
40
2k
The Pragmatic Product Professional
lauravandoore
32
6.4k
Practical Orchestrator
shlominoach
186
10k
BBQ
matthewcrist
87
9.5k
YesSQL, Process and Tooling at Scale
rocio
172
14k
Transcript
わかりやすいパターン認識 第⼀章 パターン認識とは︖
パターン認識の定義 観測されたパターンを予め定められた複数 の概念(class)のうちの⼀つに対応させる 処理
パターン認識の事例 • ⼿書きのアルファベットを26クラスに対応させる • ⾳声データを五⼗⾳や単語に対応させる(⾳声認識) • ⼼電図波形から⼼臓の異常・正常状態を判定 構造化データ、⾮構造化データ(画像・⾃然⾔語・⾳声)に関わらず様々な分 野で「パターン認識」はある。
パターン認識の⼀般的な処理の流れ 1. 前処理 1. ノイズ除去 2. 正規化 2. 特徴抽出 1.
本質的な特徴のみ抽出 3. 識別 1. 辞書と照合 識別 認識
特徴ベクトルと特徴空間 • d個の特徴︓d次元特徴ベクトルx • クラス総数c︓クラス名ωc • 特徴ベクトルのはる空間=特徴空間 • 特徴空間じょうで、特徴ベクトルは、 クラスごとにかたまっているはずで、
それらの塊=クラスタ
⼿書き数字認識の例 (5x5メッシュ2値画像) • 最もシンプルには…225パターン • 中には数字に関係ないものもある – リジェクト領域 • リジェクト領域は2種類
– 「どこにも属さない」と「識別困難」 • 辞書作成は必須。辞書作成⾃体が、識別 処理に他ならないからである
⼿書き数字認識の例 (5x5メッシュ2値画像) • 全パターンは⾮現実的、代表パターンだけを記憶(≒識別辞 書に記録)する⽅法がある。 • 代表パターン=プロトタイプ • 各特徴ベクトルが、どのプロトタイプに最も近いかで判定す ることが多い
(Nearest Neighbor rule︓NN法/最近傍決定則) • より⼀般化すると、k-NN法。最も近いk個のプロトタイプを 選び、k個のうち最も多くが属しているクラスを判定結果とす るやりかた。
特徴空間の分割〜プロトタイプを設定する • 全数記憶⽅式 – 現実のデータをサンプリングし、全体をよく表すパ ターンを(識別のための代表パターンとしての)プ ロトタイプとする⽅式 – 【注】サンプリング結果はすべてを表すものではな い
• プロトタイプ⽅式→k-meansにつながる – 各クラスに対して、⼀つのパターンを選ぶという発 想 – クラスの重⼼位置を選ぶというのは、⾃然=k- means – クラスごとの代表パターン間の垂直⼆等分線(多次 元空間であれば、超平⾯)を決定境界という
終わり