$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
わかりやすいパターン認識1章 / Pattern Recognition Manual Eas...
Search
masso
December 05, 2020
Science
0
190
わかりやすいパターン認識1章 / Pattern Recognition Manual Easy to understand SS 01
わかりやすいパターン認識のセルフ輪読会資料〜第一章
masso
December 05, 2020
Tweet
Share
More Decks by masso
See All by masso
Stacktrace for rs/zerolog users
masso
0
350
データ解釈学入門 第一部 / Data hermeneutics Part 1
masso
8
2.2k
時系列分析と状態空間モデリングの基礎 / Foundations of Time Series Analysis and State Space Models 0
masso
1
660
わかりやすいパターン認識2章 / Pattern Recognition Manual Easy to understand SS 02
masso
0
1.1k
分析環境紹介LT / the introduction of as my analysis env is
masso
0
130
データ解析のための統計モデリング入門6章 / Handbook-of-statistical-modeling-for-data-analysis-section6
masso
0
560
DLGが目指すコミュニティの形 / DLG Community Objective
masso
0
2.7k
PowerAutomateによる社員健康状態集計システム / Employee health status tabulation system with Power Automate
masso
0
1.6k
Other Decks in Science
See All in Science
Agent開発フレームワークのOverviewとW&B Weaveとのインテグレーション
siyoo
0
390
データマイニング - グラフデータと経路
trycycle
PRO
1
260
Accelerating operator Sinkhorn iteration with overrelaxation
tasusu
0
110
タンパク質間相互作⽤を利⽤した⼈⼯知能による新しい薬剤遺伝⼦-疾患相互作⽤の同定
tagtag
0
120
【論文紹介】Is CLIP ideal? No. Can we fix it?Yes! 第65回 コンピュータビジョン勉強会@関東
shun6211
5
2.1k
機械学習 - SVM
trycycle
PRO
1
940
機械学習 - K-means & 階層的クラスタリング
trycycle
PRO
0
1.2k
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
2
630
Vibecoding for Product Managers
ibknadedeji
0
120
力学系から見た現代的な機械学習
hanbao
3
3.6k
ランサムウェア対策にも考慮したVMware、Hyper-V、Azure、AWS間のリアルタイムレプリケーション「Zerto」を徹底解説
climbteam
0
180
データベース15: ビッグデータ時代のデータベース
trycycle
PRO
0
400
Featured
See All Featured
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Mobile First: as difficult as doing things right
swwweet
225
10k
Raft: Consensus for Rubyists
vanstee
141
7.2k
Into the Great Unknown - MozCon
thekraken
40
2.2k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Music & Morning Musume
bryan
46
7k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
The Invisible Side of Design
smashingmag
302
51k
How STYLIGHT went responsive
nonsquared
100
6k
It's Worth the Effort
3n
187
29k
Transcript
わかりやすいパターン認識 第⼀章 パターン認識とは︖
パターン認識の定義 観測されたパターンを予め定められた複数 の概念(class)のうちの⼀つに対応させる 処理
パターン認識の事例 • ⼿書きのアルファベットを26クラスに対応させる • ⾳声データを五⼗⾳や単語に対応させる(⾳声認識) • ⼼電図波形から⼼臓の異常・正常状態を判定 構造化データ、⾮構造化データ(画像・⾃然⾔語・⾳声)に関わらず様々な分 野で「パターン認識」はある。
パターン認識の⼀般的な処理の流れ 1. 前処理 1. ノイズ除去 2. 正規化 2. 特徴抽出 1.
本質的な特徴のみ抽出 3. 識別 1. 辞書と照合 識別 認識
特徴ベクトルと特徴空間 • d個の特徴︓d次元特徴ベクトルx • クラス総数c︓クラス名ωc • 特徴ベクトルのはる空間=特徴空間 • 特徴空間じょうで、特徴ベクトルは、 クラスごとにかたまっているはずで、
それらの塊=クラスタ
⼿書き数字認識の例 (5x5メッシュ2値画像) • 最もシンプルには…225パターン • 中には数字に関係ないものもある – リジェクト領域 • リジェクト領域は2種類
– 「どこにも属さない」と「識別困難」 • 辞書作成は必須。辞書作成⾃体が、識別 処理に他ならないからである
⼿書き数字認識の例 (5x5メッシュ2値画像) • 全パターンは⾮現実的、代表パターンだけを記憶(≒識別辞 書に記録)する⽅法がある。 • 代表パターン=プロトタイプ • 各特徴ベクトルが、どのプロトタイプに最も近いかで判定す ることが多い
(Nearest Neighbor rule︓NN法/最近傍決定則) • より⼀般化すると、k-NN法。最も近いk個のプロトタイプを 選び、k個のうち最も多くが属しているクラスを判定結果とす るやりかた。
特徴空間の分割〜プロトタイプを設定する • 全数記憶⽅式 – 現実のデータをサンプリングし、全体をよく表すパ ターンを(識別のための代表パターンとしての)プ ロトタイプとする⽅式 – 【注】サンプリング結果はすべてを表すものではな い
• プロトタイプ⽅式→k-meansにつながる – 各クラスに対して、⼀つのパターンを選ぶという発 想 – クラスの重⼼位置を選ぶというのは、⾃然=k- means – クラスごとの代表パターン間の垂直⼆等分線(多次 元空間であれば、超平⾯)を決定境界という
終わり