$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
わかりやすいパターン認識1章 / Pattern Recognition Manual Eas...
Search
masso
December 05, 2020
Science
0
190
わかりやすいパターン認識1章 / Pattern Recognition Manual Easy to understand SS 01
わかりやすいパターン認識のセルフ輪読会資料〜第一章
masso
December 05, 2020
Tweet
Share
More Decks by masso
See All by masso
Stacktrace for rs/zerolog users
masso
0
360
データ解釈学入門 第一部 / Data hermeneutics Part 1
masso
8
2.2k
時系列分析と状態空間モデリングの基礎 / Foundations of Time Series Analysis and State Space Models 0
masso
1
660
わかりやすいパターン認識2章 / Pattern Recognition Manual Easy to understand SS 02
masso
0
1.1k
分析環境紹介LT / the introduction of as my analysis env is
masso
0
140
データ解析のための統計モデリング入門6章 / Handbook-of-statistical-modeling-for-data-analysis-section6
masso
0
570
DLGが目指すコミュニティの形 / DLG Community Objective
masso
0
2.7k
PowerAutomateによる社員健康状態集計システム / Employee health status tabulation system with Power Automate
masso
0
1.6k
Other Decks in Science
See All in Science
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
160
機械学習 - SVM
trycycle
PRO
1
940
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
1
280
イロレーティングを活用した関東大学サッカーの定量的実力評価 / A quantitative performance evaluation of Kanto University Football Association using Elo rating
konakalab
0
150
PPIのみを用いたAIによる薬剤–遺伝子–疾患 相互作用の同定
tagtag
0
120
データマイニング - グラフデータと経路
trycycle
PRO
1
260
タンパク質間相互作⽤を利⽤した⼈⼯知能による新しい薬剤遺伝⼦-疾患相互作⽤の同定
tagtag
0
120
蔵本モデルが解き明かす同期と相転移の秘密 〜拍手のリズムはなぜ揃うのか?〜
syotasasaki593876
1
160
防災デジタル分野での官民共創の取り組み (1)防災DX官民共創をどう進めるか
ditccsugii
0
430
2025-05-31-pycon_italia
sofievl
0
120
Accelerated Computing for Climate forecast
inureyes
PRO
0
140
あなたに水耕栽培を愛していないとは言わせない
mutsumix
1
140
Featured
See All Featured
Tell your own story through comics
letsgokoyo
0
740
Claude Code のすすめ
schroneko
65
200k
SEO Brein meetup: CTRL+C is not how to scale international SEO
lindahogenes
0
2.2k
Large-scale JavaScript Application Architecture
addyosmani
515
110k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
286
14k
Groundhog Day: Seeking Process in Gaming for Health
codingconduct
0
60
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
75
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.6k
Redefining SEO in the New Era of Traffic Generation
szymonslowik
1
150
Dominate Local Search Results - an insider guide to GBP, reviews, and Local SEO
greggifford
PRO
0
11
Testing 201, or: Great Expectations
jmmastey
46
7.8k
Designing Powerful Visuals for Engaging Learning
tmiket
0
180
Transcript
わかりやすいパターン認識 第⼀章 パターン認識とは︖
パターン認識の定義 観測されたパターンを予め定められた複数 の概念(class)のうちの⼀つに対応させる 処理
パターン認識の事例 • ⼿書きのアルファベットを26クラスに対応させる • ⾳声データを五⼗⾳や単語に対応させる(⾳声認識) • ⼼電図波形から⼼臓の異常・正常状態を判定 構造化データ、⾮構造化データ(画像・⾃然⾔語・⾳声)に関わらず様々な分 野で「パターン認識」はある。
パターン認識の⼀般的な処理の流れ 1. 前処理 1. ノイズ除去 2. 正規化 2. 特徴抽出 1.
本質的な特徴のみ抽出 3. 識別 1. 辞書と照合 識別 認識
特徴ベクトルと特徴空間 • d個の特徴︓d次元特徴ベクトルx • クラス総数c︓クラス名ωc • 特徴ベクトルのはる空間=特徴空間 • 特徴空間じょうで、特徴ベクトルは、 クラスごとにかたまっているはずで、
それらの塊=クラスタ
⼿書き数字認識の例 (5x5メッシュ2値画像) • 最もシンプルには…225パターン • 中には数字に関係ないものもある – リジェクト領域 • リジェクト領域は2種類
– 「どこにも属さない」と「識別困難」 • 辞書作成は必須。辞書作成⾃体が、識別 処理に他ならないからである
⼿書き数字認識の例 (5x5メッシュ2値画像) • 全パターンは⾮現実的、代表パターンだけを記憶(≒識別辞 書に記録)する⽅法がある。 • 代表パターン=プロトタイプ • 各特徴ベクトルが、どのプロトタイプに最も近いかで判定す ることが多い
(Nearest Neighbor rule︓NN法/最近傍決定則) • より⼀般化すると、k-NN法。最も近いk個のプロトタイプを 選び、k個のうち最も多くが属しているクラスを判定結果とす るやりかた。
特徴空間の分割〜プロトタイプを設定する • 全数記憶⽅式 – 現実のデータをサンプリングし、全体をよく表すパ ターンを(識別のための代表パターンとしての)プ ロトタイプとする⽅式 – 【注】サンプリング結果はすべてを表すものではな い
• プロトタイプ⽅式→k-meansにつながる – 各クラスに対して、⼀つのパターンを選ぶという発 想 – クラスの重⼼位置を選ぶというのは、⾃然=k- means – クラスごとの代表パターン間の垂直⼆等分線(多次 元空間であれば、超平⾯)を決定境界という
終わり