Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
わかりやすいパターン認識1章 / Pattern Recognition Manual Eas...
Search
masso
December 05, 2020
Science
0
180
わかりやすいパターン認識1章 / Pattern Recognition Manual Easy to understand SS 01
わかりやすいパターン認識のセルフ輪読会資料〜第一章
masso
December 05, 2020
Tweet
Share
More Decks by masso
See All by masso
Stacktrace for rs/zerolog users
masso
0
320
データ解釈学入門 第一部 / Data hermeneutics Part 1
masso
8
2.2k
時系列分析と状態空間モデリングの基礎 / Foundations of Time Series Analysis and State Space Models 0
masso
1
620
わかりやすいパターン認識2章 / Pattern Recognition Manual Easy to understand SS 02
masso
0
1k
分析環境紹介LT / the introduction of as my analysis env is
masso
0
120
データ解析のための統計モデリング入門6章 / Handbook-of-statistical-modeling-for-data-analysis-section6
masso
0
540
DLGが目指すコミュニティの形 / DLG Community Objective
masso
0
2.6k
PowerAutomateによる社員健康状態集計システム / Employee health status tabulation system with Power Automate
masso
0
1.5k
Other Decks in Science
See All in Science
実力評価性能を考慮した弓道高校生全国大会の大会制度設計の提案 / (konakalab presentation at MSS 2025.03)
konakalab
2
190
論文紹介 音源分離:SCNET SPARSE COMPRESSION NETWORK FOR MUSIC SOURCE SEPARATION
kenmatsu4
0
290
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
1
550
2025-06-11-ai_belgium
sofievl
1
140
統計的因果探索: 背景知識とデータにより因果仮説を探索する
sshimizu2006
4
990
機械学習 - K-means & 階層的クラスタリング
trycycle
PRO
0
1k
02_西村訓弘_プログラムディレクター_人口減少を機にひらく未来社会.pdf
sip3ristex
0
590
01_篠原弘道_SIPガバニングボード座長_ポスコロSIPへの期待.pdf
sip3ristex
0
640
データマイニング - コミュニティ発見
trycycle
PRO
0
140
データベース06: SQL (3/3) 副問い合わせ
trycycle
PRO
1
620
05_山中真也_室蘭工業大学大学院工学研究科教授_だてプロの挑戦.pdf
sip3ristex
0
610
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
160
Featured
See All Featured
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.5k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
The World Runs on Bad Software
bkeepers
PRO
70
11k
BBQ
matthewcrist
89
9.8k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
820
Large-scale JavaScript Application Architecture
addyosmani
512
110k
Facilitating Awesome Meetings
lara
55
6.5k
Faster Mobile Websites
deanohume
309
31k
Optimizing for Happiness
mojombo
379
70k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
Transcript
わかりやすいパターン認識 第⼀章 パターン認識とは︖
パターン認識の定義 観測されたパターンを予め定められた複数 の概念(class)のうちの⼀つに対応させる 処理
パターン認識の事例 • ⼿書きのアルファベットを26クラスに対応させる • ⾳声データを五⼗⾳や単語に対応させる(⾳声認識) • ⼼電図波形から⼼臓の異常・正常状態を判定 構造化データ、⾮構造化データ(画像・⾃然⾔語・⾳声)に関わらず様々な分 野で「パターン認識」はある。
パターン認識の⼀般的な処理の流れ 1. 前処理 1. ノイズ除去 2. 正規化 2. 特徴抽出 1.
本質的な特徴のみ抽出 3. 識別 1. 辞書と照合 識別 認識
特徴ベクトルと特徴空間 • d個の特徴︓d次元特徴ベクトルx • クラス総数c︓クラス名ωc • 特徴ベクトルのはる空間=特徴空間 • 特徴空間じょうで、特徴ベクトルは、 クラスごとにかたまっているはずで、
それらの塊=クラスタ
⼿書き数字認識の例 (5x5メッシュ2値画像) • 最もシンプルには…225パターン • 中には数字に関係ないものもある – リジェクト領域 • リジェクト領域は2種類
– 「どこにも属さない」と「識別困難」 • 辞書作成は必須。辞書作成⾃体が、識別 処理に他ならないからである
⼿書き数字認識の例 (5x5メッシュ2値画像) • 全パターンは⾮現実的、代表パターンだけを記憶(≒識別辞 書に記録)する⽅法がある。 • 代表パターン=プロトタイプ • 各特徴ベクトルが、どのプロトタイプに最も近いかで判定す ることが多い
(Nearest Neighbor rule︓NN法/最近傍決定則) • より⼀般化すると、k-NN法。最も近いk個のプロトタイプを 選び、k個のうち最も多くが属しているクラスを判定結果とす るやりかた。
特徴空間の分割〜プロトタイプを設定する • 全数記憶⽅式 – 現実のデータをサンプリングし、全体をよく表すパ ターンを(識別のための代表パターンとしての)プ ロトタイプとする⽅式 – 【注】サンプリング結果はすべてを表すものではな い
• プロトタイプ⽅式→k-meansにつながる – 各クラスに対して、⼀つのパターンを選ぶという発 想 – クラスの重⼼位置を選ぶというのは、⾃然=k- means – クラスごとの代表パターン間の垂直⼆等分線(多次 元空間であれば、超平⾯)を決定境界という
終わり