Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
わかりやすいパターン認識1章 / Pattern Recognition Manual Eas...
Search
masso
December 05, 2020
Science
0
200
わかりやすいパターン認識1章 / Pattern Recognition Manual Easy to understand SS 01
わかりやすいパターン認識のセルフ輪読会資料〜第一章
masso
December 05, 2020
Tweet
Share
More Decks by masso
See All by masso
Stacktrace for rs/zerolog users
masso
0
380
データ解釈学入門 第一部 / Data hermeneutics Part 1
masso
8
2.3k
時系列分析と状態空間モデリングの基礎 / Foundations of Time Series Analysis and State Space Models 0
masso
1
680
わかりやすいパターン認識2章 / Pattern Recognition Manual Easy to understand SS 02
masso
0
1.1k
分析環境紹介LT / the introduction of as my analysis env is
masso
0
140
データ解析のための統計モデリング入門6章 / Handbook-of-statistical-modeling-for-data-analysis-section6
masso
0
580
DLGが目指すコミュニティの形 / DLG Community Objective
masso
0
2.8k
PowerAutomateによる社員健康状態集計システム / Employee health status tabulation system with Power Automate
masso
0
1.6k
Other Decks in Science
See All in Science
Cross-Media Technologies, Information Science and Human-Information Interaction
signer
PRO
3
32k
【RSJ2025】PAMIQ Core: リアルタイム継続学習のための⾮同期推論・学習フレームワーク
gesonanko
0
640
Distributional Regression
tackyas
0
340
Navigating Weather and Climate Data
rabernat
0
110
NDCG is NOT All I Need
statditto
2
2.8k
Algorithmic Aspects of Quiver Representations
tasusu
0
190
(2025) Balade en cyclotomie
mansuy
0
450
防災デジタル分野での官民共創の取り組み (1)防災DX官民共創をどう進めるか
ditccsugii
0
510
データマイニング - コミュニティ発見
trycycle
PRO
0
210
機械学習 - K近傍法 & 機械学習のお作法
trycycle
PRO
0
1.3k
学術講演会中央大学学員会府中支部
tagtag
PRO
0
350
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
260
Featured
See All Featured
So, you think you're a good person
axbom
PRO
2
1.9k
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
170
The Mindset for Success: Future Career Progression
greggifford
PRO
0
240
Leadership Guide Workshop - DevTernity 2021
reverentgeek
1
200
A Modern Web Designer's Workflow
chriscoyier
698
190k
エンジニアに許された特別な時間の終わり
watany
106
230k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.7k
Conquering PDFs: document understanding beyond plain text
inesmontani
PRO
4
2.3k
Music & Morning Musume
bryan
47
7.1k
Fireside Chat
paigeccino
41
3.8k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Building the Perfect Custom Keyboard
takai
2
690
Transcript
わかりやすいパターン認識 第⼀章 パターン認識とは︖
パターン認識の定義 観測されたパターンを予め定められた複数 の概念(class)のうちの⼀つに対応させる 処理
パターン認識の事例 • ⼿書きのアルファベットを26クラスに対応させる • ⾳声データを五⼗⾳や単語に対応させる(⾳声認識) • ⼼電図波形から⼼臓の異常・正常状態を判定 構造化データ、⾮構造化データ(画像・⾃然⾔語・⾳声)に関わらず様々な分 野で「パターン認識」はある。
パターン認識の⼀般的な処理の流れ 1. 前処理 1. ノイズ除去 2. 正規化 2. 特徴抽出 1.
本質的な特徴のみ抽出 3. 識別 1. 辞書と照合 識別 認識
特徴ベクトルと特徴空間 • d個の特徴︓d次元特徴ベクトルx • クラス総数c︓クラス名ωc • 特徴ベクトルのはる空間=特徴空間 • 特徴空間じょうで、特徴ベクトルは、 クラスごとにかたまっているはずで、
それらの塊=クラスタ
⼿書き数字認識の例 (5x5メッシュ2値画像) • 最もシンプルには…225パターン • 中には数字に関係ないものもある – リジェクト領域 • リジェクト領域は2種類
– 「どこにも属さない」と「識別困難」 • 辞書作成は必須。辞書作成⾃体が、識別 処理に他ならないからである
⼿書き数字認識の例 (5x5メッシュ2値画像) • 全パターンは⾮現実的、代表パターンだけを記憶(≒識別辞 書に記録)する⽅法がある。 • 代表パターン=プロトタイプ • 各特徴ベクトルが、どのプロトタイプに最も近いかで判定す ることが多い
(Nearest Neighbor rule︓NN法/最近傍決定則) • より⼀般化すると、k-NN法。最も近いk個のプロトタイプを 選び、k個のうち最も多くが属しているクラスを判定結果とす るやりかた。
特徴空間の分割〜プロトタイプを設定する • 全数記憶⽅式 – 現実のデータをサンプリングし、全体をよく表すパ ターンを(識別のための代表パターンとしての)プ ロトタイプとする⽅式 – 【注】サンプリング結果はすべてを表すものではな い
• プロトタイプ⽅式→k-meansにつながる – 各クラスに対して、⼀つのパターンを選ぶという発 想 – クラスの重⼼位置を選ぶというのは、⾃然=k- means – クラスごとの代表パターン間の垂直⼆等分線(多次 元空間であれば、超平⾯)を決定境界という
終わり