Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Machine Learning and Sentiment Classification i...
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Matt D.
May 30, 2011
Programming
1
1k
Machine Learning and Sentiment Classification in Ruby
Matt D.
May 30, 2011
Tweet
Share
Other Decks in Programming
See All in Programming
コマンドとリード間の連携に対する脅威分析フレームワーク
pandayumi
1
450
「ブロックテーマでは再現できない」は本当か?
inc2734
0
920
Oxlint JS plugins
kazupon
1
850
CSC307 Lecture 03
javiergs
PRO
1
490
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
530
LLM Observabilityによる 対話型音声AIアプリケーションの安定運用
gekko0114
2
420
CSC307 Lecture 04
javiergs
PRO
0
660
16年目のピクシブ百科事典を支える最新の技術基盤 / The Modern Tech Stack Powering Pixiv Encyclopedia in its 16th Year
ahuglajbclajep
5
1k
360° Signals in Angular: Signal Forms with SignalStore & Resources @ngLondon 01/2026
manfredsteyer
PRO
0
120
20260127_試行錯誤の結晶を1冊に。著者が解説 先輩データサイエンティストからの指南書 / author's_commentary_ds_instructions_guide
nash_efp
1
940
AI Agent Tool のためのバックエンドアーキテクチャを考える #encraft
izumin5210
6
1.8k
AI & Enginnering
codelynx
0
110
Featured
See All Featured
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
11
820
WCS-LA-2024
lcolladotor
0
450
Paper Plane (Part 1)
katiecoart
PRO
0
4k
Sam Torres - BigQuery for SEOs
techseoconnect
PRO
0
180
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
1k
Music & Morning Musume
bryan
47
7.1k
Designing for humans not robots
tammielis
254
26k
Embracing the Ebb and Flow
colly
88
5k
From π to Pie charts
rasagy
0
120
Building an army of robots
kneath
306
46k
Groundhog Day: Seeking Process in Gaming for Health
codingconduct
0
92
B2B Lead Gen: Tactics, Traps & Triumph
marketingsoph
0
53
Transcript
.BDIJOF -FBSOJOH BOE 4FOUJNFOU $MBTTJGJDBUJPO JO 3VCZ by Matt Drozdzynski
@matid
None
.BDIJOF -FBSOJOH … or how to teach your computer to
do back flips for you.
4FOUJNFOU $MBTTJGJDBUJPO … or how to quantify people’s opinions.
#euruko is definitely the most amazing Ruby conference ever!
I’ve been to many dreadful conferences, but #euruko is certainly
not one of them.
Ruby is a true delight compared to how horrendous Java
can be.
d JO 3VCZ
None
None
%BUB (BUIFSJOH
None
None
-BOHVBHF "DDVSBDZ 0% 25% 50% 75% 100% 2007 English Spanish
German Italian Polish
"OOPUBUJPOT … or I have the tweets—now what?
%BUB $MFBOJOH … or how to separate wheat from the
chaff.
'FBUVSF 3FEVDUJPO … or Matt’s crash course in selective ignorance.
$MBTTJGJDBUJPO … and the ‘not so rocket’ science behind it
all.
/BJWF #BZFT Simple and robust Assumes independence of features Scalable!
require "ankusa" require "ankusa/memory_storage" storage = Ankusa::MemoryStorage.new classifier = Ankusa::NaiveBayesClassifier.new(storage)
training.each do |tweet| classifier.train tweet.sentiment, tweet.to_s end sentiment = classifier.classify tweet.to_s
.BYJNVN &OUSPQZ No independence assumptions Suffers from overfitting Substantially slower
than Naive Bayes
require "maxent_string_classifier" classifier = MaxentStringClassifier::Loader.train(Classifier.root + "max_ent" + "data") classification
= classifier.classify tweet.to_s
4VQQPSU 7FDUPS .BDIJOFT Non-probabilistic binary linear classifier Only directly applicable
to two-class problems “Works by constructing a set of hyperplanes in a high or infinite dimensional space”—what?
None
require "eluka" classifier = Eluka::Model.new training.each do |tweet| classifier.add(tweet.features, tweet.sentiment)
end classifier.build sentiment = classifier.classify tweet.features
$PODMVTJPOT … or is the whole thing worth the hassle?
2VFTUJPOT
@matid spkr8.com/t/7678 bit.ly/matid-dissertation bit.ly/matid-dissertation-pdf 5IBOLT