Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
How to Make Causal Inferences with Time-Series ...
Search
Matthew Blackwell
April 13, 2013
Science
2
200
How to Make Causal Inferences with Time-Series Cross-Sectional Data
Matthew Blackwell
April 13, 2013
Tweet
Share
Other Decks in Science
See All in Science
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
1k
データマイニング - ノードの中心性
trycycle
PRO
0
280
データマイニング - ウェブとグラフ
trycycle
PRO
0
190
地質研究者が苦労しながら運用する情報公開システムの実例
naito2000
0
290
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
870
KH Coderチュートリアル(スライド版)
koichih
1
49k
データマイニング - グラフデータと経路
trycycle
PRO
1
230
データベース10: 拡張実体関連モデル
trycycle
PRO
0
1k
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
410
「美は世界を救う」を心理学で実証したい~クラファンを通じた新しい研究方法
jimpe_hitsuwari
1
170
蔵本モデルが解き明かす同期と相転移の秘密 〜拍手のリズムはなぜ揃うのか?〜
syotasasaki593876
1
120
デジタルアーカイブの教育利用促進を目指したメタデータLOD基盤に関する研究 / Research on a Metadata LOD Platform for Promoting Educational Uses of Digital Archives
masao
0
110
Featured
See All Featured
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.5k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.7k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
2.9k
Being A Developer After 40
akosma
91
590k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.7k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
jQuery: Nuts, Bolts and Bling
dougneiner
65
7.9k
Writing Fast Ruby
sferik
630
62k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
620
Building Better People: How to give real-time feedback that sticks.
wjessup
369
20k
Transcript
How to Make Causal Inferences with Time-Series Cross-Sectional Data Matthew
Blackwell University of Rochester Adam Glynn Harvard University
How to Make Causal Inferences with Time-Series Cross-Sectional Data
How to Make Causal Inferences with Time-Series Cross-Sectional Data Very
Carefully.
How to Make Causal Inferences with Time-Series Cross-Sectional Data Using
weights.
ۺ˞ ۢ˞ ۹˞ ۢ ۹ ۺ
What is the effect of A on Y? ۺ˞ ۢ˞
۹˞ ۢ ۹ ۺ
What is the effect of A on Y? contemporaneous ۺ˞
ۢ˞ ۹˞ ۢ ۹ ۺ
What is the effect of A on Y? treatment history
ۺ˞ ۢ˞ ۹˞ ۢ ۹ ۺ
Shouldn't we have more notation?
ۢ ۢ Ɛ ۢ Treatment history
Shouldn't we have more notation?
ۢ ۢ Ɛ ۢ Treatment history
Shouldn't we have more notation? Specific instance of a treatment history ۼ ۼ Ɛ ۼ
ۢ ۢ Ɛ ۢ Treatment history
ۺ ۼ Potential outcomes Shouldn't we have more notation? Specific instance of a treatment history ۼ ۼ Ɛ ۼ
The effect of history
The effect of history ণ ۼ ۼƓ
ۦ=ۺ ۼ ˞ ۺ ۼƓ ? Average Treatment History Effect
The effect of history ণ ۼ ۼƓ
ۦ=ۺ ۼ ˞ ۺ ۼƓ ? Average Treatment History Effect ATHE
The effect of history ণ ۼ ۼƓ
ۦ=ۺ ۼ ˞ ۺ ۼƓ ? Average Treatment History Effect 1 1 1 1 1 1 1 ATHE
The effect of history ণ ۼ ۼƓ
ۦ=ۺ ۼ ˞ ۺ ۼƓ ? Average Treatment History Effect 1 1 1 1 1 1 1 0 0 0 0 0 0 0 vs ATHE
The effect of history
The effect of history Blip Effect ণ۽ ۼ ˞
ۦ=ۺ ۼ ˞ ˞ ۺ ۼ ˞ ?
The effect of history 1 0 0 0 0 0
0 0 vs 0 0 0 0 0 0 Blip Effect ণ۽ ۼ ˞ ۦ=ۺ ۼ ˞ ˞ ۺ ۼ ˞ ?
The effect of history 1 0 0 0 0 0
0 0 vs 0 0 0 0 0 0 Blip Effect ণ۽ ۼ ˞ ۦ=ۺ ۼ ˞ ˞ ۺ ۼ ˞ ?
The effect of history 1 0 0 0 0 vs
0 0 0 1 1 1 Blip Effect ণ۽ ۼ ˞ ۦ=ۺ ۼ ˞ ˞ ۺ ۼ ˞ ? 1 1 1
The effect of history 1 0 vs 1 1 1
Blip Effect ণ۽ ۼ ˞ ۦ=ۺ ۼ ˞ ˞ ۺ ۼ ˞ ? 1 1 1 1 1 1 1 1 1
The effect of history
The effect of history Contemporaneous Effect of Treatment ণ
ۦ=ণ۽ ۼ ˞ ?
The effect of history Contemporaneous Effect of Treatment ণ
ۦ=ণ۽ ۼ ˞ ? CET
The effect of history 1 0 vs Contemporaneous Effect of
Treatment ণ ۦ=ণ۽ ۼ ˞ ? CET
The effect of history 1 0 vs Contemporaneous Effect of
Treatment ণ ۦ=ণ۽ ۼ ˞ ? CET Marginalize over the past
TSCS data under sequential ignorability Treatment is unrelated to the
potential outcomes ...conditional on the covariate history. ۺ ۼ е е ۢ ^۹ ۺ ˞ ۢ ܃˞ ۼ ˞
How conditioning leads you astray
How conditioning leads you astray ...for some questions.
How conditioning leads you astray ...for some questions. ۺ
૿ ۢ ଁ ۹ ଂ ۺ˞ ଃ ۢ˞
ۺ˞ ۢ˞ ۢ ۹ ۺ How conditioning leads you astray
...for some questions. ۺ ૿ ۢ ଁ ۹ ଂ ۺ˞ ଃ ۢ˞
ۺ˞ ۢ˞ ۢ ۹ ۺ How conditioning leads you astray
...for some questions. We “fix” these ۺ ૿ ۢ ଁ ۹ ଂ ۺ˞ ଃ ۢ˞
ۺ˞ ۢ˞ ۢ ۹ ۺ How conditioning leads you astray
...for some questions. We “fix” these ۺ ૿ ۢ ଁ ۹ ଂ ۺ˞ ଃ ۢ˞
ۺ˞ ۢ˞ ۢ ۹ ۺ How conditioning leads you astray
We “fix” these ...for some questions. ۺ ૿ ۢ ଁ ۹ ଂ ۺ˞ ଃ ۢ˞
ۺ˞ ۢ˞ ۢ ۹ ۺ How conditioning leads you astray
...for some questions. ۺ ૿ ۢ ଁ ۹ ଂ ۺ˞ ଃ ۢ˞
ۺ˞ ۢ˞ ۢ ۹ ۺ How conditioning leads you astray
এ૾ ...for some questions. ۺ ૿ ۢ ଁ ۹ ଂ ۺ˞ ଃ ۢ˞
ۺ˞ ۢ˞ ۢ ۹ ۺ How conditioning leads you astray
এ૾ ? ? ? ? ? ? ...for some questions. ۺ ૿ ۢ ଁ ۹ ଂ ۺ˞ ଃ ۢ˞
ۺ˞ ۢ˞ ۢ ۹ ۺ How conditioning leads you astray
এ૾ ? ? ? ? ? ? ...for some questions. CET: (1,0) vs (0,0) ATHE: (0,1) vs (0,0) ATHE: (1,1) vs (0,0) এ૾ ̪ এଁ ̪ এ૾ এଁ ۺ ૿ ۢ ଁ ۹ ଂ ۺ˞ ଃ ۢ˞
How weighting can help
ۺ˞ ۢ˞ ۢ ۹ ۺ How weighting can help
ۺ˞ ۢ˞ ۢ ۹ ۺ How weighting can help ۸܃
ಿ ܍ 2T=ۢ܃܍ ^ۢ˞ ۹ ۺ˞ ?
ۺ˞ ۢ˞ ۢ ۹ ۺ How weighting can help ۸܃
ಿ ܍ 2T=ۢ܃܍ ^ۢ˞ ۹ ۺ˞ ? We weight to create balance
ۺ˞ ۢ˞ ۢ ۹ ۺ How weighting can help We
weight to create balance ۸܃ ಿ ܍ 2T=ۢ܃܍ ^ۢ˞ ۹ ۺ˞ ?
ۺ˞ ۢ˞ ۢ ۹ ۺ How weighting can help ۸܃
ಿ ܍ 2T=ۢ܃܍ ^ۢ˞ ۹ ۺ˞ ? Unconfounded No posttreatment bias
How weighting can help
How weighting can help ۦ=ۺ ۼ ۼ˞ ?
ۦ۸ =ۺ ^ۢ ۼ ۢ˞ ۼ˞ ? ૿ ۼ ଁ ۼ˞
How weighting can help ۦ=ۺ ۼ ۼ˞ ?
ۦ۸ =ۺ ^ۢ ۼ ۢ˞ ۼ˞ ? ૿ ۼ ଁ ۼ˞ WLS
How weighting can help ۦ=ۺ ۼ ۼ˞ ?
ۦ۸ =ۺ ^ۢ ۼ ۢ˞ ۼ˞ ? ૿ ۼ ଁ ۼ˞ WLS CET: (1,0) vs (0,0) ATHE: (0,1) vs (0,0) ATHE: (1,1) vs (0,0) এ૾ ଁ ଁ
The Long Arm of the Democratic Peace?
The Long Arm of the Democratic Peace? Democracy in year
t War in year t
The Long Arm of the Democratic Peace? Democracy in year
t War in year t Democratic Peace Literature
The Long Arm of the Democratic Peace? Democracy in year
t War in year t Democratic Peace Literature History of Democracy
The Long Arm of the Democratic Peace? Democracy in year
t War in year t Democratic Peace Literature History of Democracy Can we estimate this?
%FQFOEFOU WBSJBCMF %JTQVUF #,5 .JTTQFDJĕFE *158 .PEFM $VNVMBUJWF .PEFM .4.
%FNPDSBDZ #MJQ ˞૿ଅˣˣˣ ૿ଅ૿ $VNVMBUJWF %FNPDSBDZ ˞૿૿૿ ˞૿૿ଃˣˣˣ ૿૿ଁ ૿૿ଂ (SPXUI ˞ଂଇଂଆˣˣˣ ˞ଃଂଅ૿ˣˣˣ 0CTFSWBUJPOT ଁ૿ ଃଃଇ ଁ૿ ଃଃଇ ଁ૿ ଃଃଇ /PUF ˣQ ˣˣQ ˣˣˣQ Revisiting Beck, Katz, and Tucker (1998)
%FQFOEFOU WBSJBCMF %JTQVUF #,5 .JTTQFDJĕFE *158 .PEFM $VNVMBUJWF .PEFM .4.
%FNPDSBDZ #MJQ ˞૿ଅˣˣˣ ૿ଅ૿ $VNVMBUJWF %FNPDSBDZ ˞૿૿૿ ˞૿૿ଃˣˣˣ ૿૿ଁ ૿૿ଂ (SPXUI ˞ଂଇଂଆˣˣˣ ˞ଃଂଅ૿ˣˣˣ 0CTFSWBUJPOT ଁ૿ ଃଃଇ ଁ૿ ଃଃଇ ଁ૿ ଃଃଇ /PUF ˣQ ˣˣQ ˣˣˣQ Revisiting Beck, Katz, and Tucker (1998)
Democracy in year t War in year t Economic Growth
in year t History of Democracy Misspecification of an ATHE Time-Varying Confounder
%FQFOEFOU WBSJBCMF %JTQVUF #,5 .JTTQFDJĕFE *158 .PEFM $VNVMBUJWF .PEFM .4.
%FNPDSBDZ #MJQ ˞૿ଅˣˣˣ ૿ଅ૿ $VNVMBUJWF %FNPDSBDZ ˞૿૿૿ ˞૿૿ଃˣˣˣ ૿૿ଁ ૿૿ଂ (SPXUI ˞ଂଇଂଆˣˣˣ ˞ଃଂଅ૿ˣˣˣ 0CTFSWBUJPOT ଁ૿ ଃଃଇ ଁ૿ ଃଃଇ ଁ૿ ଃଃଇ /PUF ˣQ ˣˣQ ˣˣˣQ Revisiting Beck, Katz, and Tucker (1998)
TSCS data under unmeasured confounding
TSCS data under unmeasured confounding ۺ܃ ۼ е е
ۢ܃ ^۹ ܃ ۢ ܃˞ ۼ ˞ ۶
TSCS data under unmeasured confounding Treatment is unrelated to the
potential outcomes ۺ܃ ۼ е е ۢ܃ ^۹ ܃ ۢ ܃˞ ۼ ˞ ۶
TSCS data under unmeasured confounding Treatment is unrelated to the
potential outcomes ...conditional on the covariate history ۺ܃ ۼ е е ۢ܃ ^۹ ܃ ۢ ܃˞ ۼ ˞ ۶
TSCS data under unmeasured confounding Treatment is unrelated to the
potential outcomes ...conditional on the covariate history ۺ܃ ۼ е е ۢ܃ ^۹ ܃ ۢ ܃˞ ۼ ˞ ۶ ...and a time-fixed unmeasured confounder.
How unit-specific weighting can help
How unit-specific weighting can help ۺ˞ ۢ˞ ۢ ۹ ۺ
۶
How unit-specific weighting can help ۺ˞ ۢ˞ ۢ ۹ ۺ
۶ ۸܃ ಿ ܍ 2T=ۢ܃܍ ^ۢ˞ ۹ ۺ˞ ۶?
How unit-specific weighting can help ۺ˞ ۢ˞ ۢ ۹ ۺ
۶ ۸܃ ಿ ܍ 2T=ۢ܃܍ ^ۢ˞ ۹ ۺ˞ ۶? Weighting balances the treatment groups.
ۺ˞ ۢ˞ ۢ ۹ ۺ How unit-specific weighting can help
۶ ۸܃ ಿ ܍ 2T=ۢ܃܍ ^ۢ˞ ۹ ۺ˞ ۶?
A weighting approach to fixed effects
A weighting approach to fixed effects 1 Estimate unit-specific probability
of treatment over time and construct weights.
A weighting approach to fixed effects 1 Estimate unit-specific probability
of treatment over time and construct weights. 2 Estimate a pooled outcome model with unit-specific weights
k-order sequential ignorability
k-order sequential ignorability ۺ܃ ۼ е е ۢ܃ ^۹
܃̂˞܅ ۢ ܃˞̂˞܅ ۼ ˞̂˞܅ ۶
k-order sequential ignorability Only the last k periods matter. ۺ܃
ۼ е е ۢ܃ ^۹ ܃̂˞܅ ۢ ܃˞̂˞܅ ۼ ˞̂˞܅ ۶
Blip effect: (1,0) vs (0,0) Time periods Blip effect 10
25 50 75 100 125 0.2 0.3 0.4 0.5 0.6 0.7
Blip effect: (1,0) vs (0,0) Time periods Blip effect 10
25 50 75 100 125 0.2 0.3 0.4 0.5 0.6 0.7
Pooled Blip effect: (1,0) vs (0,0) Time periods Blip effect
10 25 50 75 100 125 0.2 0.3 0.4 0.5 0.6 0.7 • • • • • •
Pooled Outcome fixed effects Blip effect: (1,0) vs (0,0) Time
periods Blip effect 10 25 50 75 100 125 0.2 0.3 0.4 0.5 0.6 0.7 • • • • • •
Pooled Outcome fixed effects Blip effect: (1,0) vs (0,0) IPTW
true weights Time periods Blip effect 10 25 50 75 100 125 0.2 0.3 0.4 0.5 0.6 0.7 • • • • • •
Pooled IPTW fixed effects Outcome fixed effects IPTW true weights
Blip effect: (1,0) vs (0,0) Time periods Blip effect 10 25 50 75 100 125 0.2 0.3 0.4 0.5 0.6 0.7 • • • • • •
Treatment History Effect: (1,1) vs (0,0) Time periods ATHE 10
25 50 75 100 125 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Treatment History Effect: (1,1) vs (0,0) Time periods ATHE 10
25 50 75 100 125 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Time periods ATHE 10 25 50 75 100 125 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Pooled Treatment History Effect: (1,1) vs (0,0) Time periods ATHE
10 25 50 75 100 125 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 • • • • • •
Pooled Outcome fixed effects Treatment History Effect: (1,1) vs (0,0)
Time periods ATHE 10 25 50 75 100 125 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 • • • • • •
Pooled Outcome fixed effects IPTW true weights Treatment History Effect:
(1,1) vs (0,0) Time periods ATHE 10 25 50 75 100 125 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 • • • • • •
Pooled IPTW fixed effects Outcome fixed effects IPTW true weights
Treatment History Effect: (1,1) vs (0,0) Time periods ATHE 10 25 50 75 100 125 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 • • • • • •
How to make causal inferences with TSCS data
How to make causal inferences with TSCS data Very carefully
How to make causal inferences with TSCS data Very carefully
Even under strong assumptions, conditional estimators cannot recover ATHEs.
How to make causal inferences with TSCS data Very carefully
Using weights Even under strong assumptions, conditional estimators cannot recover ATHEs.
How to make causal inferences with TSCS data Very carefully
Using weights Even under strong assumptions, conditional estimators cannot recover ATHEs. A fixed effects weighting approach can recover ATHEs and CETs even with unmeasured confounding.