Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[計算機構論] Learning Models of Individual Behavior ...
Search
mei28
January 10, 2023
0
70
[計算機構論] Learning Models of Individual Behavior in Chess
計算機構論の資料
Learning Models of Individual Behavior in Chess(KDD2022)
mei28
January 10, 2023
Tweet
Share
More Decks by mei28
See All by mei28
[読み会] “Are You Really Sure?” Understanding the Effects of Human Self-Confidence Calibration in AI-Assisted Decision Making
mei28
0
83
[JSAI'24] 人間の判断根拠は文脈によって異なるのか?〜信頼されるXAIに向けた人間の判断根拠理解〜
mei28
1
490
[CHI'24] Fair Machine Guidance to Enhance Fair Decision Making in Biased People
mei28
0
55
[DEIM2024] 卓球の得点予測における重要要素の分析
mei28
0
37
[Human-AI Decision Making勉強会] 意思決定 with AIは個人vsグループで変わるの?
mei28
0
200
[読み会] Words are All You Need? Language as an Approximation for Human Similality Judgements
mei28
0
36
[参加報告] AAAI'23
mei28
0
89
[計算機構論] Why do tree-based models still outperform deep learning on tabular data?
mei28
0
55
チーム開発と機械学習
mei28
0
54
Featured
See All Featured
How STYLIGHT went responsive
nonsquared
98
5.4k
GitHub's CSS Performance
jonrohan
1030
460k
Designing for Performance
lara
604
68k
The Cost Of JavaScript in 2023
addyosmani
47
7.4k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Designing on Purpose - Digital PM Summit 2013
jponch
117
7.1k
A designer walks into a library…
pauljervisheath
205
24k
Docker and Python
trallard
44
3.3k
Being A Developer After 40
akosma
89
590k
Embracing the Ebb and Flow
colly
84
4.6k
Building Your Own Lightsaber
phodgson
104
6.2k
Speed Design
sergeychernyshev
27
810
Transcript
ܭࢉػߏ! ༶໌ -FBSOJOH.PEFMTPG*OEJWJEVBM #FIBWJPSJO$IFTT
จใ ,%% • બΜͩཧ༝ɿ • ूஂϨϕϧͰ฿͢Δػցֶशଘࡏ͢Δ͕ɼݸਓϨϕϧ Ͱ฿͢Δํ๏ʹ͍ͭͯڵຯ͕͔͋ͬͨΒ • νΣεʢήʔϜʣΛςʔϚʹͨ͠ͷͰ໘നͦ͏͔ͩͬͨ
Β
ຊݚڀͷ֓ཁ • νΣεΛࡐʹɼݸਓϨϕϧͰ฿͢Δ Ϟσϧͷֶशɼ׆༻ʹ͍ͭͯߟ͑Δ •
ݚڀഎܠ • ػցֶशϞσϧ͕ਓؒͷೳྗΛΔ͔ʹ্ճΔΑ͏ʹ • ਓؒɼʮػց͔ΒʢͱʣֶͿʯΑ͏ͳ׆༻Λ࢝͠Ίͯ ͍Δ • ػցͷৼΔ͍ਓؒͱҟͳΔͨΊɼ
ػց͔ΒֶͿͷ୭ͰͰ͖Δ͜ͱͰͳ͍ • ˠػցλεΫΛ͜ͳͨ͢Ίʹɼ࠷దͳํࡦΛͱΔ͕ɼ ɹͦͷํࡦࣗମ͕ɼਓ͕ؒཧղͰ͖ΔͷͱݶΒͳ͍
Ͳ͏ػցΛ׆༻͢Δͷ͔ʁ • ػցͷߦಈͱਓؒͷཧղͷΪϟοϓΛຒΊΔͨΊʹɼ ػցଆ͕λεΫʹରͯ͠࠷దͳํࡦΛۙࣅ͢ΔͷͰͳ ͘ɼਓؒͷํࡦʹ͚ۙͮΔํ๏Λߟ͑Δ • ຊݚڀͰɼ࠷దͳػցΛਓֶ͕ؒͿελϯεͰͳ ͘ɼػցଆ͕ਓؒΒ͠͞ʹدͤΔํ๏Λߟ͑Δ
νΣεΛࡐʹਓؒʹدͤΔ • ʹ*#.ͷʮ%FFQ#MVFʯ͕࣌ͷνΣεͷ ੈքԦऀʹରͯ͠ɼউརΛऩΊͨ • Ԧऀ͕ཧղͰ͖ͳ͔ͬͨҰख͕ɼ ࣮%FFQ#MVFଆͷόάͩͬͨ͋ΔΈ͍ͨ
• νΣεΦϯϥΠϯͰΜʹ༡Εͯɼ େྔʹσʔλ͕͋Δ
طଘͷνΣεϞσϧͳ͍ͷʁ • .BJBͱݺΕΔ"MQIB;FSPΛͱʹͨ͠ϑϨʔϜϫʔΫ ͕ଘࡏ͍ͯ͠Δ • ΦϯϥΠϯͷϓϨΠσʔλΛͱʹɼʮਓؒΒ͍͠ʯࢦ ͠ํΛߦ͏͜ͱ͕Մೳɽ • Ϩϕϧ͚Λͨ͠ڧ͞ͳΒଧͯΔ͕ɼ
ݸਓϨϕϧͷ฿ʹࢸ͍ͬͯͳ͍
ࣅͨΑ͏ͳݚڀΛͬ͘͟Γ • ࠓճɼసҠֶशͷจ຺ΛऔΓೖΕΔ • ˠଞʹ฿ֶशɼυϝΠϯద༻ɼϝλϥʔχϯάɼϚ ϧνλεΫֶशͳͲࣅͨ৭ʑ͋Δ • ຊདྷͷసҠֶशͰɼग़དྷΔ͚ͩগͳ͍αϯϓϧͰੑ ೳ্Λࢦ͢
• ຊݚڀͰɼେྔͷσʔλΛ༻͍ͯɼݸผʹϑΟοτ͢ Δ͜ͱΛඪʹ͍ͯ͠Δɽ
ݸผϞσϧʹಛԽͨ͠ݚڀ͋Δͷ͔ʁ • ݸผϞσϧΛಛఆ͢ΔͨΊʹɼطଘݚڀͰϓϨΠϠʔͷ ࣝผ͔͠ߦΘΕ͍ͯͳ͍ • ຒΊࠐΈΛհͯ͠ͷΈͰ͔͠ಈ࡞͠ͳ͍ • ϨϕϧΛ฿͢Δํ๏ͱͯ͠ɼطଘͷνΣεΤϯδϯͰ ɼڧ͞Λམͱ͢͜ͱͰ࠶ݱ͍ͯͨ͠
• ˠ͜ΕͰ฿͍ͯ͠Δͱݴ͑ͳ͍ΑͶ • ຊݚڀͰɼ ݸผϞσϧͷֶश ݸผͷಛఆ͕Ͱ͖ΔͰҧ͏
σʔληοτʹ͍ͭͯ • νΣεͷΦʔϓϯιʔεϓϥοτϑΥʔϜͷ -JDIFTTΛ༻͍Δ • େମԯͷରઓσʔλ͕͋Γɼଟ༷ͳϓϨΠϠʔɼࢼ߹ ܗ͕ࣜଘࡏ •
#MJU[ΧςΰϦ ͷήʔϜ Λରʹߦ͏
͏Ϟσϧͷ • -FFMB$IFTT;FSPɿ"MQIB;FSPͷਂڧԽֶशͷ044 • .BJB$IFTTɿ-FFMB$IFTT;FSP ڭࢣΛՃɽ ਓؒͷ࣍ͷҰखΛ༧ଌ͢Δͷͷ4P5" •
ఏҊख๏Ͱ.BJBϞσϧΛϕʔεʹ͢Δɽ • $// 3F-6ͱεΫΠʔζͷؒʹɼ ࣌ܥྻࠩଓΛՃʢϓʔϦϯάͳ͠ʣ
ϋΠύϥɼϞσϧͷॏΈॳظͱ͔Ͳ͏͢Δʁ • طଘͷ.BJBϞσϧ͔ΒసҠֶश͢Δ͚Ͳɼֶशલͷύϥ ϝʔλઃఆʹ͍ͭͯߟ͑Δ • ̎ஈ֊ͰॏΈͷॳظԽɼݸผԽΛߦ͏ • ॳظԽɿෳਓɼେྔͷࢼ߹Ͱେ·͔ͳֶशΛߦ͏ •
ݸผԽɿಛఆͷϓϨΠϠʔͷࢼ߹Ͱ fi OFUVOJOH • ॳظԽͷͱ͖ͲΜͳਓͷࢼ߹Λ͍͍͑ͷ͔ʁ
༧උ࣮ݧɿॳظͲΜͳਓͰֶश͢Δ͖͔ʁ • طଘݚڀͷ.BJBͰɼࣅͨΑ͏ͳϨϕϧͰֶशͨ͠Ϟσϧ ͷ΄͏͕ɼࣅͨϨϕϧͷҰखΛ༧ଌਫ਼͕ߴ͔ͬͨɽ • ͔͜͜Βɼ࣍ͷҰखΛߟ͑Δͱ͖Ϩϕϧʹґଘ͢Δͱ ࢥ͍ͬͯͨɽ • ͔͠͠ɼಛఆͷϓϨΠϠʔͷҰख༧ଌʹ͍ͭͯɼͲͷϨ
ϕϧ͔Βֶशͯ͋͠·ΓมΘΒͳ͔ͬͨ • ˠຊݚڀͰɼϨϕϧ͕ߴ͍ूஂͰֶशͨ͠Ϟσϧ͔Βݸ ผԽΛߦ͍ͬͯ͘ɽ
ॏΈͷݻఆͲ͏͢Δ͔ʁ • సҠֶश fi OFUVOJOHͰɼதؒදݱͷݻఆͯ͠ɼ ࠷ऴ͚ۙͩΛௐ͢Δͷ͕Ұൠత • ຊݚڀͰɼதؒදݱͷΛݻఆͤͣʹɼॳظͱͯ͠༩
͑ͨޙɼҰॹʹॏΈߋ৽͞ΕΔ • ༧උ࣮ݧతʹੑೳ͕མͪͨͨΊ
ॳظԽͷεςοϓͷֶशͷઓུ • εςοϓͷֶशͷதͰͷݕূޡࠩΛ͍࣋ͪͯɼ ֶशͷεέδϡʔϦϯάΛߟ͑Δɽ • ͙Β͍͔Βݕূޡ͕ࠩେ͖͘աֶश࢝͠Ίͨɽ
• ˠ ɾ ɾ ͰֶशΛʹͨ͠ɽ • ࠷ऴతͳલσʔλͰͬͯɼ ༧උ࣮ݧͱಉ͡Α͏ͳΈΒΕͨ
ֶशαϯϓϧબʹ͢Δ • αϯϓϧબҰ༷ʹΔͷͰΑ͘ͳ͍ • νΣεͷং൫ͱத൫ऴ൫Ͱߦͬͯ༧ଌͷқ͕ҧ͏ • ং൫͋Δఔఆੴ͕͋ΔͷͰ༧ଌ͕؆୯ • த൫ऴ൫Λॏతʹֶश͍ͨ͠ͷͰɼϕʔλΛ༻͍
ͯɼ͏͔Ͳ͏͔ͷબΛߦ͏ɽ • ˠ͜Εʹؔͯ͠ɼॳظԽͰݕূਫ਼্͕ͨ͠ɼ ɹݸผԽʹؔͯ͠ɼΈΒΕͳ͔ͬͨ
ఏҊख๏ͷϙΠϯτ·ͱΊ • ॳظԽɼݸผԽͷ̎ஈ֊ͰϞσϧͷֶशΛߦ͏ • ݸผԽ͢ΔࡍʹɼॳظԽͷॏΈΛͱʹશͯߋ৽ʹ͏ • ֶश࣌ͷֶशεςοϓʹԠͯ͡ݮਰ͠աֶश༧
• αϯϓϦϯάؔɼத൫ऴ൫ʹॏΛஔ͘Α͏ʹ
࣮ݧ • ࣮ݧͰߦ͏λεΫ̎ͭ • ϝΠϯλεΫɿಛఆͷϓϨΠϠʔͷ࣍ͷҰखͷ༧ଌ • αϒλεΫɿϓϨΠϠʔͷखΛ༩͑ͨ࣌ʹ୭͔ΛͯΔ • ର߅ख๏ɿ
• ҟͳΔϨϕϧͷ.BJBΛͦͷ··༻͍Δ
ఏҊख๏ͷ΄͏͕࣍ͷҰखͷਫ਼͕ߴ͔ͬͨ • ͷਫ਼্͕ݟΒΕͨɽϨϕϧࠩͷӨڹগͳ͍
ͳΜͰਫ਼͕ߴ͍ͷ͔ʁʢͳͥ.BJB͕ऑ͍ͷ͔ ʣ • த൫ɾऴ൫ʹ͔͚ͯ༧ଌ͕͍͠ .BJB͋Δ͔࣌ΒΨΫοͱམͪΔ
ࢼ߹ͱϞσϧͷؔʁ • ࢼ߹Ҏ্͋Δͱɼ.BJBͷϕʔεϞσϧΑΓੑೳ͕ߴ͍
ݸผϞσϧຊʹݸਓΛଊ͍͑ͯΔͷ͔ʁ • ߴ͍ਫ਼Λୡ͚ͨ͠ͲɼͲͷ͘Β͍·ͰಛΛͱΒ͑ͯ ͍Δ͔ؾʹͳΔʁ • ಛఆͷϓϨΠϠʔͷಈ͖Λ༩͑ͯɼ୭ͷ͔Λ༧ଌ͢Δλε ΫΛߦ͏ • ˠQMZޙͷσʔλΛೖྗ͢ΔͱͯΕͨ
1MZͷDVUP ff ͱήʔϜͷؔΛΈ͍ͨ • $VUP ff ʢং൫ͷಈ͖ΛͲΕ͚ͩলུ͢Δʣ͕େ͖͍ͱ ং൫ͷಈ͖͕ͳ͍͔ΒλεΫͱ͍ͯ͠͠
• ࢼ߹͕ͦͦ͋͜͜Δͱेͳਫ਼͕ग़Δ ϥϯμϜͩͱ͔ͩΒݸਓΛଊ͑ΒΕ͍ͯΔͷ
ϓϨΠϠʔಛ༗ͷϛεͬͯଊ͑ΒΕΔʁ • ϓϨΠϠʔ͕ى͜͢ಛ༗ͷϛεʹ͍ͭͯΈΔɽ • ϛεࠓճɼউΛҎ্Լ͛ͯ͠·͏ߦಈͱఆٛ • ୭ͷϛε͔ʁʹ͍ͭͯಉఆ͢ΔλεΫΛߦͳͬͨͱ͜Ζ ਫ਼͕ۇ͔ʹ্ͨ͠
• ˠϛεݸਓΛಛ͚ͮΔେ͖ͳཁҼʹͳΓಘΔͷͰ ʁ
·ͱΊ • ઌߦݚڀͷ.BJBΛ͍ɼେྔͷσʔλͱసҠֶशΛΈ ߹ΘͤΔ͜ͱͰɼݸਓϨϕϧͷ฿Ϟσϧ͕࡞Ͱ͖ͨɽ • ϓϨΠϠʔͷಈ͖Λ༩͑Δ͚ͩͰɼͩΕͷಈ͖͔Λಉఆ Ͱ͖Δ͜ͱΛ֬ೝͨ͠ •
ݸਓϨϕϧͷϞσϧΛ͏͜ͱͰɼਓؒػցͱ ڠௐ͢Δ͜ͱΛଅਐ͞ΕΔ͜ͱΛظ
ॴײ • ݸਓϨϕϧΛ฿͢ΔϞσϧັྗత͕ͩͬͨɼ ݁ہେྔͷσʔλ͕͋Εͬͱ͍͏ͱ͜Ζ͕͕͔ͬΓ • Ϟσϧࣗମͪΐͬͱมߋ͚ͨ͠ͲɼͲ͏ͯͦ͠͏͔ͨ͠ ॻ͔Ε͍ͯͳ͍͔Β೦ɽ
• ݸਓͷಛΛܾΊΔҰͭͷཁҼʹϛε͕͋Δͷͪΐͬ ͱ໘ന͍ͱࢥͬͨ
DISPNFͷখٕ • 63-ΞυϨεόʔʹ ʮFݕࡧΩʔϫʔυʯΛೖΕΔ ͱɼೳಈతʹݴޠࢦఆݕࡧՄೳ • ӳ୯ޠ͚ͩͲຊޠهࣄΛ
ώοτ͍ͤͨ࣌͞ͱ͔ • ຊޠهࣄ ݟ͍ͨ͘ͳ͍࣌ͱ͔
Ԡ༻͍Ζ͍Ζ • %FFQMͩͱ63-ʹೖΕΔ͚ͩͰ༁ͯ͘͠ΕΔ ʢஈམۭനআ͞ΕΔʣ • ݕࡧΫΤϦΛ63-ͰࢦఆͰ͖Δͷશ෦ͰԠ༻Ͱ͖Δʂͣ