Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Do Galaxy Clusters Boil?

Mike McCourt
February 01, 2014

Do Galaxy Clusters Boil?

Mike McCourt

February 01, 2014
Tweet

More Decks by Mike McCourt

Other Decks in Science

Transcript

  1. Introduction Intracluster Medium hot gas: T 108 K n 0.03

    cm−3 λe ∼ 0.1 kpc rg ∼ 104 km ermal conduction important & anisotropic. xray Fabian et al. (2011)
  2. Introduction Physics of Convection Balbus (2000): δz T(z 0 +δz)

    T(z 0 +δz) < T(z 0 ) T(z 0 ) T(z 0 ); P(z 0 +δz) P(z 0 +δz) P(z 0 ) instability
  3. Introduction Physics of Convection Balbus (2000): δz T(z 0 +δz)

    T(z 0 +δz) < T(z 0 ) T(z 0 ) T(z 0 ); P(z 0 +δz) P(z 0 +δz) P(z 0 ) instability tbuoy ∼ g d ln T dz −1/2 Schwarzchild: δz s(z 0 +δz) s(z 0 +δz) < s(z 0 ) s(z 0 ) s(z 0 ); P(z 0 +δz) P(z 0 +δz) P(z 0 ) instability tbuoy ∼ g ds dz −1/2
  4. Introduction Magnetothermal Instability (non-linear) t = 0 t = 4

    tbuoy t = 6 tbuoy t = 10 tbuoy t = 30 tbuoy
  5. Temperature Profiles in Clusters Motivation 0.2 10 9 8 7

    0.0 0.4 r (Mpc) T (keV) 0.6 0.8 1.0 Initial 1 1.5 2.5 3.5 Parrish et al. (2008) Simionescu et al. (2011)
  6. “Semi-Cosmological” Simulations Movie (N.B. this is a link in the

    pdf. will convert presentation to keynote and stick the movie in the file.) temperature temperature perturbation
  7. “Semi-Cosmological” Simulations Strength of the convection? r / r200 Turbulent

    Mach # 0.0 0.5 1.0 1.5 0.1 0.2 0.3 0.4 1014M 1015M 3 × 1015M r / r200 (δT)(δvr)/c3 s 0.0 0.5 1.0 1.5 10−4 10−3 10−2 10−1
  8. Conclusion Do Galaxy Clusters Boil? t = 0 t =

    4 tbuoy t = 6 tbuoy t = 10 tbuoy t = 30 tbuoy 0.2 10 9 8 7 0.0 0.4 r (Mpc) T (keV) 0.6 0.8 1.0 Initial 1 1.5 2.5 3.5
  9. Particle Mean Free Path Spitzer-Härm collisionless q0 Bale et al.

     Derived from the  electron distribution function measured with the NASA Wind spacecraft.
  10. Temperature Profiles in Clusters Accretion Histories 1 + z M(z)

    / M(z = 0) 1 2 3 4 0.2 0.4 0.6 0.8 1.0 Type 0 Type I Type II Type III McBride et al. 2009: M(z) ∝ [(1 + z)b exp(−z)]g
  11. “Semi-Cosmological” Simulations cf.  Models Type 0 r / r200

    K 10−2 10−1 1 10−2 10−1 1 Type I r / r200 10−2 10−1 1 Type III r / r200 10−2 10−1 1 r / r200 T 0.0 0.5 1.0 1.5 0.5 1.0 1.5 2.0 2.5 3.0 r / r200 0.0 0.5 1.0 1.5 r / r200 0.0 0.5 1.0 1.5 2.0
  12. Temperature Profiles in Clusters Adiabatic Evolution r/rsh T/Tvir slow accretors:

    ˙ M M /t dyn fast accretors: ˙ M ∼ M/tdyn slow accretors: ˙ M M /t dyn fast accretors: ˙ M ∼ M/tdyn slow accretors: ˙ M M /t dyn fast accretors: ˙ M ∼ M/tdyn slow accretors: ˙ M M /t dyn fast accretors: ˙ M ∼ M/tdyn slow accretors: ˙ M M /t dyn fast accretors: ˙ M ∼ M/tdyn slow accretors: ˙ M M /t dyn fast accretors: ˙ M ∼ M/tdyn slow accretors: ˙ M M /t dyn fast accretors: ˙ M ∼ M/tdyn slow accretors: ˙ M M /t dyn fast accretors: ˙ M ∼ M/tdyn slow accretors: ˙ M M /t dyn fast accretors: ˙ M ∼ M/tdyn slow accretors: ˙ M M /t dyn fast accretors: ˙ M ∼ M/tdyn slow accretors: ˙ M M /t dyn fast accretors: ˙ M ∼ M/tdyn slow accretors: ˙ M M /t dyn fast accretors: ˙ M ∼ M/tdyn 0.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 In the case of an Isothermal Potential, this is a simple problem. T(0) = Tvir T(out) = Tsh Temperature Gradient set by Accretion Rate (tdyn × d ln M/dt)
  13. Temperature Profiles in Clusters r/rvir 0.0 0.25 0.5 0.75 1014M

    r/rvir 0.0 0.25 0.5 0.75 1.0 1015M r/rvir T/Tvir 0.0 0.25 0.5 0.75 0.5 1.0 1.5 1014.5M Accretion histories from McBride et al. 2009