Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Gas Clouds in the Galactic Center

Gas Clouds in the Galactic Center

Mike McCourt

March 23, 2015
Tweet

More Decks by Mike McCourt

Other Decks in Science

Transcript

  1. Magnetized Gas Clouds in the Galactic Center Mike McCourt, Ryan

    O’Leary, Ann-Marie Madigan, & Eliot Quataert
  2. V

  3. Outline “Gas Clouds in the Galactic Center” Dynamics of Magnetized

    Clouds Disruption (McCourt, O’Leary, Madigan, & Quataert) Acceleration Making Gas Clouds Work for Us G’s twisted sister (McCourt & Madigan) Using G to probe the accretion flow
  4. Disruption Acceleration Rotation Conclusion Background Li et al. 2013 “Cloud

    Crushing:” tcrush ∼ ρcloud ρwind 1/2 Rcloud vwind
  5. hydro t = 5 tcrush t = tstop Σcloud /(ρcloud

    Rcloud) 1 0.1 0.01 0.001 0.0
  6. hydro t = 5 tcrush t = tstop z x

    z x y x y x Σcloud /(ρcloud Rcloud) 1 0.1 0.01 0.001 0.0
  7. hydro t = 5 tcrush t = tstop z x

    z x z x z x y x y x y x y x Σcloud /(ρcloud Rcloud) 1 0.1 0.01 0.001 0.0
  8. Disruption Acceleration Rotation Conclusion Magnetically-Enhanced Drag Force ✽ ✽ ✽

    t / tcrush distance / Rcloud 0 5 10 15 10 20 30 40 50 60 70 80 Hydro βwind = 10 βwind = 1 βwind = 0.1
  9. V

  10. Disruption Acceleration Rotation Conclusion (Re-)Discovery of G G G a

    . ± . . ± . e . ± . . ± . (Pfuhl et al. 2015)
  11. Disruption Acceleration Rotation Conclusion (Re-)Discovery of G G G a

    . ± . . ± . e . ± . . ± . (Pfuhl et al. 2015)
  12. Disruption Acceleration Rotation Conclusion (Re-)Discovery of G G G a

    . ± . . ± . e . ± . . ± . J . . (Pfuhl et al. 2015)
  13. Disruption Acceleration Rotation Conclusion (Re-)Discovery of G G G a

    . ± . . ± . e . ± . . ± . J . . i . ± . . ± . Ω . ± . . ± . ω . ± . . ± . (Pfuhl et al. 2015)
  14. Disruption Acceleration Rotation Conclusion (Re-)Discovery of G G G a

    . ± . . ± . e . ± . . ± . J . . i . ± . . ± . Ω . ± . . ± . ω . ± . . ± . (Pfuhl et al. 2015)
  15. “Sometimes a man wants to be stupid if it lets

    him do a thing his cleverness forbids. ” — John Steinbeck
  16. Disruption Acceleration Rotation Conclusion A Simple Model d2r dt2 =

    − GM• r r3 − ρbg (r) Mcloud × 1 + 2 βM2 × C−1 · diag R2 cloud , Rcloud Lcloud , Rcloud Lcloud · (C · vrel )2 ρbg (r) = ρ0 r r0 −a Tbg (r) = GM• r vbg (r) = fkep GM• r 1/2 J × r J r
  17. Disruption Acceleration Rotation Conclusion Comparison with the Data V v

    los (pc/yr) −0.0015 0.0000 0.0015 time (JD) ∆v 1990 2000 2010 2020 2030 2040 2050 –0.001 0.000 0.001 RA (pc) dec. (pc) −0.005 0.000 0.005 0.010 0.015 –0.0075 –0.0050 –0.0025 0.0000 0.0025
  18. Disruption Acceleration Rotation Conclusion Constraining Accretion Flow Parameters θ φ

    30◦ 60◦ 120◦ 150◦ –90◦ 90◦ 0 π/4 π/2 3π/4 π –π –π/2 0 π/2 π α β 0.0 0.3 0.6 0.9 10−1 1 10 102 f kep (L cloud − R cloud)/R cloud 0.0 0.2 0.4 0.6 0.8 1.0 10 102
  19. Disruption Acceleration Rotation Conclusion Constraining Accretion Flow Parameters α β

    0.0 0.3 0.6 0.9 10−1 1 10 102 f kep (L cloud − R cloud)/R cloud 0.0 0.2 0.4 0.6 0.8 1.0 10 102 θ φ 30◦ 60◦ 120◦ 150◦ –135◦ –90◦ –45◦ 45◦ 90◦ 135◦ 0 π/4 π/2 3π/4 π –π –π/2 0 π/2 π
  20. Disruption Acceleration Rotation Conclusion Constraining Accretion Flow Parameters α β

    0.0 0.3 0.6 0.9 10−1 1 10 102 f kep (L cloud − R cloud)/R cloud 0.0 0.2 0.4 0.6 0.8 1.0 10 102 θ φ 30◦ 60◦ 120◦ 150◦ –135◦ –90◦ –45◦ 45◦ 90◦ 135◦ 0 π/4 π/2 3π/4 π –π –π/2 0 π/2 π
  21. Disruption Acceleration Rotation Conclusion Constraining Accretion Flow Parameters α β

    0.0 0.3 0.6 0.9 10−1 1 10 102 f kep (L cloud − R cloud)/R cloud 0.0 0.2 0.4 0.6 0.8 1.0 10 102 θ φ 30◦ 60◦ 120◦ 150◦ –135◦ –90◦ –45◦ 45◦ 90◦ 135◦ 0 π/4 π/2 3π/4 π –π –π/2 0 π/2 π
  22. Disruption Acceleration Rotation Conclusion Constraining Accretion Flow Parameters α β

    0.0 0.3 0.6 0.9 10−1 1 10 102 f kep (L cloud − R cloud)/R cloud 0.0 0.2 0.4 0.6 0.8 1.0 10 102 θ φ 30◦ 60◦ 120◦ 150◦ –135◦ –90◦ –45◦ 45◦ 90◦ 135◦ 0 π/4 π/2 3π/4 π –π –π/2 0 π/2 π
  23. Disruption Acceleration Rotation Conclusion Constraining Accretion Flow Parameters α β

    0.0 0.3 0.6 0.9 10−1 1 10 102 f kep (L cloud − R cloud)/R cloud 0.0 0.2 0.4 0.6 0.8 1.0 10 102 θ φ 30◦ 60◦ 120◦ 150◦ –135◦ –90◦ –45◦ 45◦ 90◦ 135◦ 0 π/4 π/2 3π/4 π –π –π/2 0 π/2 π
  24. Disruption Acceleration Rotation Conclusion Constraining Accretion Flow Parameters α β

    0.0 0.3 0.6 0.9 10−1 1 10 102 f kep (L cloud − R cloud)/R cloud 0.0 0.2 0.4 0.6 0.8 1.0 10 102 θ φ 30◦ 60◦ 120◦ 150◦ –135◦ –90◦ –45◦ 45◦ 90◦ 135◦ 0 π/4 π/2 3π/4 π –π –π/2 0 π/2 π
  25. Disruption Acceleration Rotation Conclusion Summary Magnetized Clouds Tangled magnetic fields

    internal to the clouds can inhibit disruption by shear instabilities. Magnetic fields external to the cloud can enhance the drag force, strongly coupling clouds to their environment. Depends on the internal structure of clouds; need to know how they formed to predict future evolution. Accretion Flow Given enough assumptions, G and G can be used to constrain properties of the accretion flow in the galactic center. If it works, only constraint at intermediate radii. Find an orientation for the rotation axis consistent with EHT determinations at smaller scales. Please keep following G!