Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data-centric MLOps(이정권)
Search
MLOpsKR
June 05, 2021
Programming
0
910
Data-centric MLOps(이정권)
MLOps KR(
https://www.facebook.com/groups/mlopskr)에서
주최한 1회 온라인 이벤트 발표 자료입니다
MLOpsKR
June 05, 2021
Tweet
Share
More Decks by MLOpsKR
See All by MLOpsKR
Ray: 대규모 ML인프라를 위한 분산 시스템 프레임워크(조상빈)
mlopskr
0
2k
JupyterFlow : 당신의 모델에 날개를 달아드립니다(유홍근)
mlopskr
0
1k
모델을 데이터셋에 맞게 대량을 찍어내는 방법(only 파이썬)(김태영)
mlopskr
0
800
KRSH: 선언형 Kubeflow, Terraform처럼 파이프라인 관리하기(김완수)
mlopskr
0
860
MLOps 춘추 전국 시대 정리(변성윤)
mlopskr
0
11k
Other Decks in Programming
See All in Programming
Amazon Bedrock Agentsを用いてアプリ開発してみた!
har1101
0
340
レガシーシステムにどう立ち向かうか 複雑さと理想と現実/vs-legacy
suzukihoge
14
2.3k
subpath importsで始めるモック生活
10tera
0
320
Make Impossible States Impossibleを 意識してReactのPropsを設計しよう
ikumatadokoro
0
240
[Do iOS '24] Ship your app on a Friday...and enjoy your weekend!
polpielladev
0
110
NSOutlineView何もわからん:( 前編 / I Don't Understand About NSOutlineView :( Pt. 1
usagimaru
0
340
Functional Event Sourcing using Sekiban
tomohisa
0
100
OSSで起業してもうすぐ10年 / Open Source Conference 2024 Shimane
furukawayasuto
0
110
『ドメイン駆動設計をはじめよう』のモデリングアプローチ
masuda220
PRO
8
540
Better Code Design in PHP
afilina
PRO
0
130
Macとオーディオ再生 2024/11/02
yusukeito
0
380
CSC509 Lecture 09
javiergs
PRO
0
140
Featured
See All Featured
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
38
1.8k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.1k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
1.9k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
6
430
RailsConf 2023
tenderlove
29
900
Designing Dashboards & Data Visualisations in Web Apps
destraynor
229
52k
How to Think Like a Performance Engineer
csswizardry
20
1.1k
Building Applications with DynamoDB
mza
90
6.1k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
232
17k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
31
2.7k
Fashionably flexible responsive web design (full day workshop)
malarkey
405
65k
Transcript
Data-centric MLOps : 데이터 중심 MLOps를 돕기 위한 작은 장치들
Superb AI 이정권
AI / ML = Model + Data
AI / ML = Model + Data Data centric?
Task Baseline: 70% accuracy Target Performance: 90% accuracy Should the
team improve the code or the data? : code(20%), data(80%) A Chat with Andrew on MLOps: From Model-centric to Data-centric AI
A Chat with Andrew on MLOps: From Model-centric to Data-centric
AI Improve AI → Improve the quality of the data: consistency error rate diversity coverage feedback frequency size ...
A Chat with Andrew on MLOps: From Model-centric to Data-centric
AI slide credit: A Chat with Andrew on MLOps: From Model-centric to Data-centric AI (https://www.youtube.com/watch?v=06-AZXmwHjo)
사실은, 늘 해오던 일 Project progress month 1 month 2
month 3 month 4 month 5 Code a model Build data Launch training job
사실은, 늘 해오던 일 Building the Software 2.0 Stack (Andrej
Karpathy, 2018)
Question: How many labeled images are needed to solve this
problem?
Answer: 100,000 images?
My Answer: I don’t know. Let’s start from 5,000 WHY?
여전히, 잘 모른다 → Data-centric MLOps Systematic & iterative way
to build Data for ML 단순히 지루한 작업을 자동화하는 과정이 아닌 ML 문제를 해결하기 위한 과정 저는 Superb AI라는 팀에서 이 문제를 풀고 있습니다.
<2달 <30명 <20,000 Images The Problem
The Meta Problem Design Data Spec Build Data Train a
model Deploy to service
Starting Point Labeling Tool Data Label
Reusable Data Spec { project_name: potato_detect_1 data_spec: good_potato: box: color:
red condition: ... bad_potato: box: } { project_name: potato_detect_2 data_spec: good_potato: polygon: color: red condition: ... bad_potato: box: }
Reusable Data Spec { project_name: potato_detect_13 data_spec: best_potato: polygon: direction:
options: ... good_potato: {} normal_potato: {} bad_potato: {} } Goal ≠ Task ALWAYS configured repeatedly name, color, type, conditions, options, property, ROI Info, ...
Support flexible pipeline 100 different problems, 100 different datasets, 100
different ways To support flexible pipeline Build Data Team Model WORKING SUBMITTED REVIEWED
Support flexible pipeline
Versioning Set 단위, 실험 당
ML Engineer를 위해 … ? Detailed Statistics & Report
Human in the loop ^ 2 Human in the loop
ML
Inside Human Labeling Data Human Labeling Service Model Data Labeling
Our Model ? Uncertain? Label-wise Confidence Overall Set Confidence User performance estimate Boost Labeling ... Human in the loop ^ 2
Keep labels consistent
Keep labels consistent
요약
Source data analysis, User analysis, Log, Task matching, etc 여전히
할일이 정말 많다. 마무리 SDK를 이용한 사용 예제!는 다음에 https://github.com/superb-AI-Suite/ Full-pipeline MLOps https://ai-infrastructure.org/