Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data-centric MLOps(이정권)
Search
MLOpsKR
June 05, 2021
Programming
0
890
Data-centric MLOps(이정권)
MLOps KR(
https://www.facebook.com/groups/mlopskr)에서
주최한 1회 온라인 이벤트 발표 자료입니다
MLOpsKR
June 05, 2021
Tweet
Share
More Decks by MLOpsKR
See All by MLOpsKR
Ray: 대규모 ML인프라를 위한 분산 시스템 프레임워크(조상빈)
mlopskr
0
2k
JupyterFlow : 당신의 모델에 날개를 달아드립니다(유홍근)
mlopskr
0
1k
모델을 데이터셋에 맞게 대량을 찍어내는 방법(only 파이썬)(김태영)
mlopskr
0
780
KRSH: 선언형 Kubeflow, Terraform처럼 파이프라인 관리하기(김완수)
mlopskr
0
840
MLOps 춘추 전국 시대 정리(변성윤)
mlopskr
0
11k
Other Decks in Programming
See All in Programming
Jakarta EE meets AI
ivargrimstad
1
500
Developer Joy == Developer Productivity (really!)
hollycummins
1
210
unique パッケージから学ぶ interning と weak reference @ Asakusa.go#3
karamaru
2
810
Hono・Prisma・AWSでGeoなAPI開発
nokonoko1203
5
680
Amebaチョイス立ち上げの裏側 ~依存システムとの闘い~
daichi_igarashi
0
230
Jakarta EE meets AI
ivargrimstad
0
380
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
0
110
メモリ最適化を究める!iOSアプリ開発における5つの重要なポイント
yhirakawa333
0
410
令和トラベルにおけるLLM活用事例:社内ツール開発から得た学びと実践
ippo012
0
210
AndroidアプリのUIバリエーションをあの手この手で確認する / Check UI variations of Android apps by various means
tkmnzm
1
170
watsonx.ai Dojo #2 生成AIを使ったアプリ開発入門編
oniak3ibm
PRO
0
160
Kotlin 2.0 and Beyond
antonarhipov
2
150
Featured
See All Featured
How GitHub Uses GitHub to Build GitHub
holman
472
290k
Gamification - CAS2011
davidbonilla
79
5k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
The Cult of Friendly URLs
andyhume
76
6k
Docker and Python
trallard
39
3k
jQuery: Nuts, Bolts and Bling
dougneiner
61
7.4k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
1
49
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
230
17k
Designing the Hi-DPI Web
ddemaree
278
34k
The Straight Up "How To Draw Better" Workshop
denniskardys
230
130k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
246
1.3M
The Invisible Side of Design
smashingmag
295
50k
Transcript
Data-centric MLOps : 데이터 중심 MLOps를 돕기 위한 작은 장치들
Superb AI 이정권
AI / ML = Model + Data
AI / ML = Model + Data Data centric?
Task Baseline: 70% accuracy Target Performance: 90% accuracy Should the
team improve the code or the data? : code(20%), data(80%) A Chat with Andrew on MLOps: From Model-centric to Data-centric AI
A Chat with Andrew on MLOps: From Model-centric to Data-centric
AI Improve AI → Improve the quality of the data: consistency error rate diversity coverage feedback frequency size ...
A Chat with Andrew on MLOps: From Model-centric to Data-centric
AI slide credit: A Chat with Andrew on MLOps: From Model-centric to Data-centric AI (https://www.youtube.com/watch?v=06-AZXmwHjo)
사실은, 늘 해오던 일 Project progress month 1 month 2
month 3 month 4 month 5 Code a model Build data Launch training job
사실은, 늘 해오던 일 Building the Software 2.0 Stack (Andrej
Karpathy, 2018)
Question: How many labeled images are needed to solve this
problem?
Answer: 100,000 images?
My Answer: I don’t know. Let’s start from 5,000 WHY?
여전히, 잘 모른다 → Data-centric MLOps Systematic & iterative way
to build Data for ML 단순히 지루한 작업을 자동화하는 과정이 아닌 ML 문제를 해결하기 위한 과정 저는 Superb AI라는 팀에서 이 문제를 풀고 있습니다.
<2달 <30명 <20,000 Images The Problem
The Meta Problem Design Data Spec Build Data Train a
model Deploy to service
Starting Point Labeling Tool Data Label
Reusable Data Spec { project_name: potato_detect_1 data_spec: good_potato: box: color:
red condition: ... bad_potato: box: } { project_name: potato_detect_2 data_spec: good_potato: polygon: color: red condition: ... bad_potato: box: }
Reusable Data Spec { project_name: potato_detect_13 data_spec: best_potato: polygon: direction:
options: ... good_potato: {} normal_potato: {} bad_potato: {} } Goal ≠ Task ALWAYS configured repeatedly name, color, type, conditions, options, property, ROI Info, ...
Support flexible pipeline 100 different problems, 100 different datasets, 100
different ways To support flexible pipeline Build Data Team Model WORKING SUBMITTED REVIEWED
Support flexible pipeline
Versioning Set 단위, 실험 당
ML Engineer를 위해 … ? Detailed Statistics & Report
Human in the loop ^ 2 Human in the loop
ML
Inside Human Labeling Data Human Labeling Service Model Data Labeling
Our Model ? Uncertain? Label-wise Confidence Overall Set Confidence User performance estimate Boost Labeling ... Human in the loop ^ 2
Keep labels consistent
Keep labels consistent
요약
Source data analysis, User analysis, Log, Task matching, etc 여전히
할일이 정말 많다. 마무리 SDK를 이용한 사용 예제!는 다음에 https://github.com/superb-AI-Suite/ Full-pipeline MLOps https://ai-infrastructure.org/