Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data-centric MLOps(이정권)
Search
MLOpsKR
June 05, 2021
Programming
0
1k
Data-centric MLOps(이정권)
MLOps KR(
https://www.facebook.com/groups/mlopskr)에서
주최한 1회 온라인 이벤트 발표 자료입니다
MLOpsKR
June 05, 2021
Tweet
Share
More Decks by MLOpsKR
See All by MLOpsKR
Ray: 대규모 ML인프라를 위한 분산 시스템 프레임워크(조상빈)
mlopskr
0
2.3k
JupyterFlow : 당신의 모델에 날개를 달아드립니다(유홍근)
mlopskr
0
1.1k
모델을 데이터셋에 맞게 대량을 찍어내는 방법(only 파이썬)(김태영)
mlopskr
0
880
KRSH: 선언형 Kubeflow, Terraform처럼 파이프라인 관리하기(김완수)
mlopskr
0
940
MLOps 춘추 전국 시대 정리(변성윤)
mlopskr
0
12k
Other Decks in Programming
See All in Programming
After go func(): Goroutines Through a Beginner’s Eye
97vaibhav
0
220
dynamic!
moro
9
5.6k
CI_CD「健康診断」のススメ。現場でのボトルネック特定から、健康診断を通じた組織的な改善手法
teamlab
PRO
0
160
詳しくない分野でのVibe Codingで困ったことと学び/vibe-coding-in-unfamiliar-area
shibayu36
3
3.3k
Web Components で実現する Hotwire とフロントエンドフレームワークの橋渡し / Bridging with Web Components
da1chi
3
1.5k
プロダクト開発をAI 1stに変革する〜SaaS is dead時代で生き残るために〜 / AI 1st Product Development
kobakei
0
450
2025年版 サーバーレス Web アプリケーションの作り方
hayatow
23
25k
monorepo の Go テストをはやくした〜い!~最小の依存解決への道のり~ / faster-testing-of-monorepos
convto
2
170
ててべんす独演会〜Flowの全てを語ります〜
tbsten
1
220
iOSアプリの信頼性を向上させる取り組み/ios-app-improve-reliability
shino8rayu9
0
140
ABEMAモバイルアプリが Kotlin Multiplatformと歩んだ5年 ─ 導入と運用、成功と課題 / iOSDC 2025
akkyie
0
310
Swift Concurrency - 状態監視の罠
objectiveaudio
2
440
Featured
See All Featured
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
Mobile First: as difficult as doing things right
swwweet
224
9.9k
Making the Leap to Tech Lead
cromwellryan
135
9.5k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
960
Scaling GitHub
holman
463
140k
A designer walks into a library…
pauljervisheath
208
24k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.1k
How to Ace a Technical Interview
jacobian
280
23k
Transcript
Data-centric MLOps : 데이터 중심 MLOps를 돕기 위한 작은 장치들
Superb AI 이정권
AI / ML = Model + Data
AI / ML = Model + Data Data centric?
Task Baseline: 70% accuracy Target Performance: 90% accuracy Should the
team improve the code or the data? : code(20%), data(80%) A Chat with Andrew on MLOps: From Model-centric to Data-centric AI
A Chat with Andrew on MLOps: From Model-centric to Data-centric
AI Improve AI → Improve the quality of the data: consistency error rate diversity coverage feedback frequency size ...
A Chat with Andrew on MLOps: From Model-centric to Data-centric
AI slide credit: A Chat with Andrew on MLOps: From Model-centric to Data-centric AI (https://www.youtube.com/watch?v=06-AZXmwHjo)
사실은, 늘 해오던 일 Project progress month 1 month 2
month 3 month 4 month 5 Code a model Build data Launch training job
사실은, 늘 해오던 일 Building the Software 2.0 Stack (Andrej
Karpathy, 2018)
Question: How many labeled images are needed to solve this
problem?
Answer: 100,000 images?
My Answer: I don’t know. Let’s start from 5,000 WHY?
여전히, 잘 모른다 → Data-centric MLOps Systematic & iterative way
to build Data for ML 단순히 지루한 작업을 자동화하는 과정이 아닌 ML 문제를 해결하기 위한 과정 저는 Superb AI라는 팀에서 이 문제를 풀고 있습니다.
<2달 <30명 <20,000 Images The Problem
The Meta Problem Design Data Spec Build Data Train a
model Deploy to service
Starting Point Labeling Tool Data Label
Reusable Data Spec { project_name: potato_detect_1 data_spec: good_potato: box: color:
red condition: ... bad_potato: box: } { project_name: potato_detect_2 data_spec: good_potato: polygon: color: red condition: ... bad_potato: box: }
Reusable Data Spec { project_name: potato_detect_13 data_spec: best_potato: polygon: direction:
options: ... good_potato: {} normal_potato: {} bad_potato: {} } Goal ≠ Task ALWAYS configured repeatedly name, color, type, conditions, options, property, ROI Info, ...
Support flexible pipeline 100 different problems, 100 different datasets, 100
different ways To support flexible pipeline Build Data Team Model WORKING SUBMITTED REVIEWED
Support flexible pipeline
Versioning Set 단위, 실험 당
ML Engineer를 위해 … ? Detailed Statistics & Report
Human in the loop ^ 2 Human in the loop
ML
Inside Human Labeling Data Human Labeling Service Model Data Labeling
Our Model ? Uncertain? Label-wise Confidence Overall Set Confidence User performance estimate Boost Labeling ... Human in the loop ^ 2
Keep labels consistent
Keep labels consistent
요약
Source data analysis, User analysis, Log, Task matching, etc 여전히
할일이 정말 많다. 마무리 SDK를 이용한 사용 예제!는 다음에 https://github.com/superb-AI-Suite/ Full-pipeline MLOps https://ai-infrastructure.org/