Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data-centric MLOps(이정권)
Search
MLOpsKR
June 05, 2021
Programming
0
950
Data-centric MLOps(이정권)
MLOps KR(
https://www.facebook.com/groups/mlopskr)에서
주최한 1회 온라인 이벤트 발표 자료입니다
MLOpsKR
June 05, 2021
Tweet
Share
More Decks by MLOpsKR
See All by MLOpsKR
Ray: 대규모 ML인프라를 위한 분산 시스템 프레임워크(조상빈)
mlopskr
0
2.1k
JupyterFlow : 당신의 모델에 날개를 달아드립니다(유홍근)
mlopskr
0
1.1k
모델을 데이터셋에 맞게 대량을 찍어내는 방법(only 파이썬)(김태영)
mlopskr
0
830
KRSH: 선언형 Kubeflow, Terraform처럼 파이프라인 관리하기(김완수)
mlopskr
0
900
MLOps 춘추 전국 시대 정리(변성윤)
mlopskr
0
12k
Other Decks in Programming
See All in Programming
Ça bouge du côté des animations CSS !
goetter
2
150
CloudNativePGを布教したい
nnaka2992
0
110
PRレビューのお供にDanger
stoticdev
1
230
『テスト書いた方が開発が早いじゃん』を解き明かす #phpcon_nagoya
o0h
PRO
8
2.4k
バッチを作らなきゃとなったときに考えること
irof
2
520
ファインディLT_ポケモン対戦の定量的分析
fufufukakaka
0
920
Honoとフロントエンドの 型安全性について
yodaka
7
1.4k
データの整合性を保つ非同期処理アーキテクチャパターン / Async Architecture Patterns
mokuo
54
19k
『GO』アプリ データ基盤のログ収集システムコスト削減
mot_techtalk
0
150
Jakarta EE meets AI
ivargrimstad
0
300
SwiftUI Viewの責務分離
elmetal
PRO
2
270
2025.2.14_Developers Summit 2025_登壇資料
0101unite
0
180
Featured
See All Featured
Building a Scalable Design System with Sketch
lauravandoore
461
33k
Making the Leap to Tech Lead
cromwellryan
133
9.1k
Producing Creativity
orderedlist
PRO
344
40k
Building Your Own Lightsaber
phodgson
104
6.2k
Statistics for Hackers
jakevdp
797
220k
Java REST API Framework Comparison - PWX 2021
mraible
29
8.4k
The World Runs on Bad Software
bkeepers
PRO
67
11k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
129
19k
GraphQLの誤解/rethinking-graphql
sonatard
68
10k
GraphQLとの向き合い方2022年版
quramy
44
14k
The Art of Programming - Codeland 2020
erikaheidi
53
13k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
10
510
Transcript
Data-centric MLOps : 데이터 중심 MLOps를 돕기 위한 작은 장치들
Superb AI 이정권
AI / ML = Model + Data
AI / ML = Model + Data Data centric?
Task Baseline: 70% accuracy Target Performance: 90% accuracy Should the
team improve the code or the data? : code(20%), data(80%) A Chat with Andrew on MLOps: From Model-centric to Data-centric AI
A Chat with Andrew on MLOps: From Model-centric to Data-centric
AI Improve AI → Improve the quality of the data: consistency error rate diversity coverage feedback frequency size ...
A Chat with Andrew on MLOps: From Model-centric to Data-centric
AI slide credit: A Chat with Andrew on MLOps: From Model-centric to Data-centric AI (https://www.youtube.com/watch?v=06-AZXmwHjo)
사실은, 늘 해오던 일 Project progress month 1 month 2
month 3 month 4 month 5 Code a model Build data Launch training job
사실은, 늘 해오던 일 Building the Software 2.0 Stack (Andrej
Karpathy, 2018)
Question: How many labeled images are needed to solve this
problem?
Answer: 100,000 images?
My Answer: I don’t know. Let’s start from 5,000 WHY?
여전히, 잘 모른다 → Data-centric MLOps Systematic & iterative way
to build Data for ML 단순히 지루한 작업을 자동화하는 과정이 아닌 ML 문제를 해결하기 위한 과정 저는 Superb AI라는 팀에서 이 문제를 풀고 있습니다.
<2달 <30명 <20,000 Images The Problem
The Meta Problem Design Data Spec Build Data Train a
model Deploy to service
Starting Point Labeling Tool Data Label
Reusable Data Spec { project_name: potato_detect_1 data_spec: good_potato: box: color:
red condition: ... bad_potato: box: } { project_name: potato_detect_2 data_spec: good_potato: polygon: color: red condition: ... bad_potato: box: }
Reusable Data Spec { project_name: potato_detect_13 data_spec: best_potato: polygon: direction:
options: ... good_potato: {} normal_potato: {} bad_potato: {} } Goal ≠ Task ALWAYS configured repeatedly name, color, type, conditions, options, property, ROI Info, ...
Support flexible pipeline 100 different problems, 100 different datasets, 100
different ways To support flexible pipeline Build Data Team Model WORKING SUBMITTED REVIEWED
Support flexible pipeline
Versioning Set 단위, 실험 당
ML Engineer를 위해 … ? Detailed Statistics & Report
Human in the loop ^ 2 Human in the loop
ML
Inside Human Labeling Data Human Labeling Service Model Data Labeling
Our Model ? Uncertain? Label-wise Confidence Overall Set Confidence User performance estimate Boost Labeling ... Human in the loop ^ 2
Keep labels consistent
Keep labels consistent
요약
Source data analysis, User analysis, Log, Task matching, etc 여전히
할일이 정말 많다. 마무리 SDK를 이용한 사용 예제!는 다음에 https://github.com/superb-AI-Suite/ Full-pipeline MLOps https://ai-infrastructure.org/