Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data-centric MLOps(이정권)
Search
MLOpsKR
June 05, 2021
Programming
0
1k
Data-centric MLOps(이정권)
MLOps KR(
https://www.facebook.com/groups/mlopskr)에서
주최한 1회 온라인 이벤트 발표 자료입니다
MLOpsKR
June 05, 2021
Tweet
Share
More Decks by MLOpsKR
See All by MLOpsKR
Ray: 대규모 ML인프라를 위한 분산 시스템 프레임워크(조상빈)
mlopskr
0
2.3k
JupyterFlow : 당신의 모델에 날개를 달아드립니다(유홍근)
mlopskr
0
1.1k
모델을 데이터셋에 맞게 대량을 찍어내는 방법(only 파이썬)(김태영)
mlopskr
0
870
KRSH: 선언형 Kubeflow, Terraform처럼 파이프라인 관리하기(김완수)
mlopskr
0
930
MLOps 춘추 전국 시대 정리(변성윤)
mlopskr
0
12k
Other Decks in Programming
See All in Programming
AI駆動のマルチエージェントによる業務フロー自動化の設計と実践
h_okkah
0
270
階層化自動テストで開発に機動力を
ickx
1
380
The Modern View Layer Rails Deserves: A Vision For 2025 And Beyond @ RailsConf 2025, Philadelphia, PA
marcoroth
2
760
The Evolution of Enterprise Java with Jakarta EE 11 and Beyond
ivargrimstad
0
380
20250704_教育事業におけるアジャイルなデータ基盤構築
hanon52_
5
1.2k
AIともっと楽するE2Eテスト
myohei
9
3.1k
AI コーディングエージェントの時代へ:JetBrains が描く開発の未来
masaruhr
1
210
猫と暮らす Google Nest Cam生活🐈 / WebRTC with Google Nest Cam
yutailang0119
0
180
Rails Frontend Evolution: It Was a Setup All Along
skryukov
0
300
Hack Claude Code with Claude Code
choplin
8
2.7k
SQLアンチパターン第2版 データベースプログラミングで陥りがちな失敗とその対策 / Intro to SQL Antipatterns 2nd
twada
PRO
26
7.7k
dbt民主化とLLMによる開発ブースト ~ AI Readyな分析サイクルを目指して ~
yoshyum
3
1.2k
Featured
See All Featured
How to Think Like a Performance Engineer
csswizardry
25
1.8k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
282
13k
Thoughts on Productivity
jonyablonski
69
4.7k
Why You Should Never Use an ORM
jnunemaker
PRO
58
9.5k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.6k
How STYLIGHT went responsive
nonsquared
100
5.6k
Statistics for Hackers
jakevdp
799
220k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
750
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
KATA
mclloyd
30
14k
The Cost Of JavaScript in 2023
addyosmani
51
8.6k
Transcript
Data-centric MLOps : 데이터 중심 MLOps를 돕기 위한 작은 장치들
Superb AI 이정권
AI / ML = Model + Data
AI / ML = Model + Data Data centric?
Task Baseline: 70% accuracy Target Performance: 90% accuracy Should the
team improve the code or the data? : code(20%), data(80%) A Chat with Andrew on MLOps: From Model-centric to Data-centric AI
A Chat with Andrew on MLOps: From Model-centric to Data-centric
AI Improve AI → Improve the quality of the data: consistency error rate diversity coverage feedback frequency size ...
A Chat with Andrew on MLOps: From Model-centric to Data-centric
AI slide credit: A Chat with Andrew on MLOps: From Model-centric to Data-centric AI (https://www.youtube.com/watch?v=06-AZXmwHjo)
사실은, 늘 해오던 일 Project progress month 1 month 2
month 3 month 4 month 5 Code a model Build data Launch training job
사실은, 늘 해오던 일 Building the Software 2.0 Stack (Andrej
Karpathy, 2018)
Question: How many labeled images are needed to solve this
problem?
Answer: 100,000 images?
My Answer: I don’t know. Let’s start from 5,000 WHY?
여전히, 잘 모른다 → Data-centric MLOps Systematic & iterative way
to build Data for ML 단순히 지루한 작업을 자동화하는 과정이 아닌 ML 문제를 해결하기 위한 과정 저는 Superb AI라는 팀에서 이 문제를 풀고 있습니다.
<2달 <30명 <20,000 Images The Problem
The Meta Problem Design Data Spec Build Data Train a
model Deploy to service
Starting Point Labeling Tool Data Label
Reusable Data Spec { project_name: potato_detect_1 data_spec: good_potato: box: color:
red condition: ... bad_potato: box: } { project_name: potato_detect_2 data_spec: good_potato: polygon: color: red condition: ... bad_potato: box: }
Reusable Data Spec { project_name: potato_detect_13 data_spec: best_potato: polygon: direction:
options: ... good_potato: {} normal_potato: {} bad_potato: {} } Goal ≠ Task ALWAYS configured repeatedly name, color, type, conditions, options, property, ROI Info, ...
Support flexible pipeline 100 different problems, 100 different datasets, 100
different ways To support flexible pipeline Build Data Team Model WORKING SUBMITTED REVIEWED
Support flexible pipeline
Versioning Set 단위, 실험 당
ML Engineer를 위해 … ? Detailed Statistics & Report
Human in the loop ^ 2 Human in the loop
ML
Inside Human Labeling Data Human Labeling Service Model Data Labeling
Our Model ? Uncertain? Label-wise Confidence Overall Set Confidence User performance estimate Boost Labeling ... Human in the loop ^ 2
Keep labels consistent
Keep labels consistent
요약
Source data analysis, User analysis, Log, Task matching, etc 여전히
할일이 정말 많다. 마무리 SDK를 이용한 사용 예제!는 다음에 https://github.com/superb-AI-Suite/ Full-pipeline MLOps https://ai-infrastructure.org/