Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data-centric MLOps(이정권)
Search
MLOpsKR
June 05, 2021
Programming
0
1k
Data-centric MLOps(이정권)
MLOps KR(
https://www.facebook.com/groups/mlopskr)에서
주최한 1회 온라인 이벤트 발표 자료입니다
MLOpsKR
June 05, 2021
Tweet
Share
More Decks by MLOpsKR
See All by MLOpsKR
Ray: 대규모 ML인프라를 위한 분산 시스템 프레임워크(조상빈)
mlopskr
0
2.4k
JupyterFlow : 당신의 모델에 날개를 달아드립니다(유홍근)
mlopskr
0
1.1k
모델을 데이터셋에 맞게 대량을 찍어내는 방법(only 파이썬)(김태영)
mlopskr
0
900
KRSH: 선언형 Kubeflow, Terraform처럼 파이프라인 관리하기(김완수)
mlopskr
0
960
MLOps 춘추 전국 시대 정리(변성윤)
mlopskr
0
13k
Other Decks in Programming
See All in Programming
組み合わせ爆発にのまれない - 責務分割 x テスト
halhorn
1
190
実は歴史的なアップデートだと思う AWS Interconnect - multicloud
maroon1st
0
320
Grafana:建立系統全知視角的捷徑
blueswen
0
290
TerraformとStrands AgentsでAmazon Bedrock AgentCoreのSSO認証付きエージェントを量産しよう!
neruneruo
4
2.5k
Unicodeどうしてる? PHPから見たUnicode対応と他言語での対応についてのお伺い
youkidearitai
PRO
0
580
AIエージェントの設計で注意するべきポイント6選
har1101
6
3.1k
フロントエンド開発の勘所 -複数事業を経験して見えた判断軸の違い-
heimusu
7
2.5k
Basic Architectures
denyspoltorak
0
270
Combinatorial Interview Problems with Backtracking Solutions - From Imperative Procedural Programming to Declarative Functional Programming - Part 2
philipschwarz
PRO
0
140
AI Agent Dojo #4: watsonx Orchestrate ADK体験
oniak3ibm
PRO
0
130
QAフローを最適化し、品質水準を満たしながらリリースまでの期間を最短化する #RSGT2026
shibayu36
1
2.6k
大規模Cloud Native環境におけるFalcoの運用
owlinux1000
0
250
Featured
See All Featured
How GitHub (no longer) Works
holman
316
140k
GraphQLの誤解/rethinking-graphql
sonatard
74
11k
職位にかかわらず全員がリーダーシップを発揮するチーム作り / Building a team where everyone can demonstrate leadership regardless of position
madoxten
54
49k
We Have a Design System, Now What?
morganepeng
54
8k
Designing for Performance
lara
610
70k
My Coaching Mixtape
mlcsv
0
26
The AI Search Optimization Roadmap by Aleyda Solis
aleyda
1
5.1k
Highjacked: Video Game Concept Design
rkendrick25
PRO
1
270
KATA
mclloyd
PRO
33
15k
A Modern Web Designer's Workflow
chriscoyier
698
190k
Digital Ethics as a Driver of Design Innovation
axbom
PRO
0
140
SERP Conf. Vienna - Web Accessibility: Optimizing for Inclusivity and SEO
sarafernandez
1
1.3k
Transcript
Data-centric MLOps : 데이터 중심 MLOps를 돕기 위한 작은 장치들
Superb AI 이정권
AI / ML = Model + Data
AI / ML = Model + Data Data centric?
Task Baseline: 70% accuracy Target Performance: 90% accuracy Should the
team improve the code or the data? : code(20%), data(80%) A Chat with Andrew on MLOps: From Model-centric to Data-centric AI
A Chat with Andrew on MLOps: From Model-centric to Data-centric
AI Improve AI → Improve the quality of the data: consistency error rate diversity coverage feedback frequency size ...
A Chat with Andrew on MLOps: From Model-centric to Data-centric
AI slide credit: A Chat with Andrew on MLOps: From Model-centric to Data-centric AI (https://www.youtube.com/watch?v=06-AZXmwHjo)
사실은, 늘 해오던 일 Project progress month 1 month 2
month 3 month 4 month 5 Code a model Build data Launch training job
사실은, 늘 해오던 일 Building the Software 2.0 Stack (Andrej
Karpathy, 2018)
Question: How many labeled images are needed to solve this
problem?
Answer: 100,000 images?
My Answer: I don’t know. Let’s start from 5,000 WHY?
여전히, 잘 모른다 → Data-centric MLOps Systematic & iterative way
to build Data for ML 단순히 지루한 작업을 자동화하는 과정이 아닌 ML 문제를 해결하기 위한 과정 저는 Superb AI라는 팀에서 이 문제를 풀고 있습니다.
<2달 <30명 <20,000 Images The Problem
The Meta Problem Design Data Spec Build Data Train a
model Deploy to service
Starting Point Labeling Tool Data Label
Reusable Data Spec { project_name: potato_detect_1 data_spec: good_potato: box: color:
red condition: ... bad_potato: box: } { project_name: potato_detect_2 data_spec: good_potato: polygon: color: red condition: ... bad_potato: box: }
Reusable Data Spec { project_name: potato_detect_13 data_spec: best_potato: polygon: direction:
options: ... good_potato: {} normal_potato: {} bad_potato: {} } Goal ≠ Task ALWAYS configured repeatedly name, color, type, conditions, options, property, ROI Info, ...
Support flexible pipeline 100 different problems, 100 different datasets, 100
different ways To support flexible pipeline Build Data Team Model WORKING SUBMITTED REVIEWED
Support flexible pipeline
Versioning Set 단위, 실험 당
ML Engineer를 위해 … ? Detailed Statistics & Report
Human in the loop ^ 2 Human in the loop
ML
Inside Human Labeling Data Human Labeling Service Model Data Labeling
Our Model ? Uncertain? Label-wise Confidence Overall Set Confidence User performance estimate Boost Labeling ... Human in the loop ^ 2
Keep labels consistent
Keep labels consistent
요약
Source data analysis, User analysis, Log, Task matching, etc 여전히
할일이 정말 많다. 마무리 SDK를 이용한 사용 예제!는 다음에 https://github.com/superb-AI-Suite/ Full-pipeline MLOps https://ai-infrastructure.org/