$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data-centric MLOps(이정권)
Search
MLOpsKR
June 05, 2021
Programming
0
1k
Data-centric MLOps(이정권)
MLOps KR(
https://www.facebook.com/groups/mlopskr)에서
주최한 1회 온라인 이벤트 발표 자료입니다
MLOpsKR
June 05, 2021
Tweet
Share
More Decks by MLOpsKR
See All by MLOpsKR
Ray: 대규모 ML인프라를 위한 분산 시스템 프레임워크(조상빈)
mlopskr
0
2.4k
JupyterFlow : 당신의 모델에 날개를 달아드립니다(유홍근)
mlopskr
0
1.1k
모델을 데이터셋에 맞게 대량을 찍어내는 방법(only 파이썬)(김태영)
mlopskr
0
890
KRSH: 선언형 Kubeflow, Terraform처럼 파이프라인 관리하기(김완수)
mlopskr
0
960
MLOps 춘추 전국 시대 정리(변성윤)
mlopskr
0
13k
Other Decks in Programming
See All in Programming
リリース時」テストから「デイリー実行」へ!開発マネージャが取り組んだ、レガシー自動テストのモダン化戦略
goataka
0
140
AtCoder Conference 2025
shindannin
0
520
著者と進める!『AIと個人開発したくなったらまずCursorで要件定義だ!』
yasunacoffee
0
160
Grafana:建立系統全知視角的捷徑
blueswen
0
220
Claude Codeの「Compacting Conversation」を体感50%減! CLAUDE.md + 8 Skills で挑むコンテキスト管理術
kmurahama
1
640
Patterns of Patterns
denyspoltorak
0
340
Python札幌 LT資料
t3tra
7
1k
Denoのセキュリティに関する仕組みの紹介 (toranoana.deno #23)
uki00a
0
160
生成AI時代を勝ち抜くエンジニア組織マネジメント
coconala_engineer
0
8.4k
tsgolintはいかにしてtypescript-goの非公開APIを呼び出しているのか
syumai
7
2.3k
Navigating Dependency Injection with Metro
l2hyunwoo
1
180
Navigation 3: 적응형 UI를 위한 앱 탐색
fornewid
1
460
Featured
See All Featured
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
YesSQL, Process and Tooling at Scale
rocio
174
15k
The #1 spot is gone: here's how to win anyway
tamaranovitovic
1
860
Google's AI Overviews - The New Search
badams
0
870
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
A designer walks into a library…
pauljervisheath
210
24k
Why Mistakes Are the Best Teachers: Turning Failure into a Pathway for Growth
auna
0
28
The browser strikes back
jonoalderson
0
120
How to Talk to Developers About Accessibility
jct
1
85
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
A Tale of Four Properties
chriscoyier
162
23k
Transcript
Data-centric MLOps : 데이터 중심 MLOps를 돕기 위한 작은 장치들
Superb AI 이정권
AI / ML = Model + Data
AI / ML = Model + Data Data centric?
Task Baseline: 70% accuracy Target Performance: 90% accuracy Should the
team improve the code or the data? : code(20%), data(80%) A Chat with Andrew on MLOps: From Model-centric to Data-centric AI
A Chat with Andrew on MLOps: From Model-centric to Data-centric
AI Improve AI → Improve the quality of the data: consistency error rate diversity coverage feedback frequency size ...
A Chat with Andrew on MLOps: From Model-centric to Data-centric
AI slide credit: A Chat with Andrew on MLOps: From Model-centric to Data-centric AI (https://www.youtube.com/watch?v=06-AZXmwHjo)
사실은, 늘 해오던 일 Project progress month 1 month 2
month 3 month 4 month 5 Code a model Build data Launch training job
사실은, 늘 해오던 일 Building the Software 2.0 Stack (Andrej
Karpathy, 2018)
Question: How many labeled images are needed to solve this
problem?
Answer: 100,000 images?
My Answer: I don’t know. Let’s start from 5,000 WHY?
여전히, 잘 모른다 → Data-centric MLOps Systematic & iterative way
to build Data for ML 단순히 지루한 작업을 자동화하는 과정이 아닌 ML 문제를 해결하기 위한 과정 저는 Superb AI라는 팀에서 이 문제를 풀고 있습니다.
<2달 <30명 <20,000 Images The Problem
The Meta Problem Design Data Spec Build Data Train a
model Deploy to service
Starting Point Labeling Tool Data Label
Reusable Data Spec { project_name: potato_detect_1 data_spec: good_potato: box: color:
red condition: ... bad_potato: box: } { project_name: potato_detect_2 data_spec: good_potato: polygon: color: red condition: ... bad_potato: box: }
Reusable Data Spec { project_name: potato_detect_13 data_spec: best_potato: polygon: direction:
options: ... good_potato: {} normal_potato: {} bad_potato: {} } Goal ≠ Task ALWAYS configured repeatedly name, color, type, conditions, options, property, ROI Info, ...
Support flexible pipeline 100 different problems, 100 different datasets, 100
different ways To support flexible pipeline Build Data Team Model WORKING SUBMITTED REVIEWED
Support flexible pipeline
Versioning Set 단위, 실험 당
ML Engineer를 위해 … ? Detailed Statistics & Report
Human in the loop ^ 2 Human in the loop
ML
Inside Human Labeling Data Human Labeling Service Model Data Labeling
Our Model ? Uncertain? Label-wise Confidence Overall Set Confidence User performance estimate Boost Labeling ... Human in the loop ^ 2
Keep labels consistent
Keep labels consistent
요약
Source data analysis, User analysis, Log, Task matching, etc 여전히
할일이 정말 많다. 마무리 SDK를 이용한 사용 예제!는 다음에 https://github.com/superb-AI-Suite/ Full-pipeline MLOps https://ai-infrastructure.org/