Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data-centric MLOps(이정권)
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
MLOpsKR
June 05, 2021
Programming
0
1k
Data-centric MLOps(이정권)
MLOps KR(
https://www.facebook.com/groups/mlopskr)에서
주최한 1회 온라인 이벤트 발표 자료입니다
MLOpsKR
June 05, 2021
Tweet
Share
More Decks by MLOpsKR
See All by MLOpsKR
Ray: 대규모 ML인프라를 위한 분산 시스템 프레임워크(조상빈)
mlopskr
0
2.4k
JupyterFlow : 당신의 모델에 날개를 달아드립니다(유홍근)
mlopskr
0
1.1k
모델을 데이터셋에 맞게 대량을 찍어내는 방법(only 파이썬)(김태영)
mlopskr
0
900
KRSH: 선언형 Kubeflow, Terraform처럼 파이프라인 관리하기(김완수)
mlopskr
0
960
MLOps 춘추 전국 시대 정리(변성윤)
mlopskr
0
13k
Other Decks in Programming
See All in Programming
CSC307 Lecture 09
javiergs
PRO
1
840
Data-Centric Kaggle
isax1015
2
770
フロントエンド開発の勘所 -複数事業を経験して見えた判断軸の違い-
heimusu
7
2.8k
AtCoder Conference 2025
shindannin
0
1.1k
「ブロックテーマでは再現できない」は本当か?
inc2734
0
990
Oxlint JS plugins
kazupon
1
950
CSC307 Lecture 08
javiergs
PRO
0
670
Apache Iceberg V3 and migration to V3
tomtanaka
0
160
Fragmented Architectures
denyspoltorak
0
150
AI前提で考えるiOSアプリのモダナイズ設計
yuukiw00w
0
230
Oxlintはいいぞ
yug1224
5
1.3k
AI時代のキャリアプラン「技術の引力」からの脱出と「問い」へのいざない / tech-gravity
minodriven
21
7.2k
Featured
See All Featured
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Producing Creativity
orderedlist
PRO
348
40k
Organizational Design Perspectives: An Ontology of Organizational Design Elements
kimpetersen
PRO
1
190
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
The AI Revolution Will Not Be Monopolized: How open-source beats economies of scale, even for LLMs
inesmontani
PRO
3
3k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
14k
HDC tutorial
michielstock
1
380
What Being in a Rock Band Can Teach Us About Real World SEO
427marketing
0
170
Designing Powerful Visuals for Engaging Learning
tmiket
0
230
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Building AI with AI
inesmontani
PRO
1
690
Lightning talk: Run Django tests with GitHub Actions
sabderemane
0
110
Transcript
Data-centric MLOps : 데이터 중심 MLOps를 돕기 위한 작은 장치들
Superb AI 이정권
AI / ML = Model + Data
AI / ML = Model + Data Data centric?
Task Baseline: 70% accuracy Target Performance: 90% accuracy Should the
team improve the code or the data? : code(20%), data(80%) A Chat with Andrew on MLOps: From Model-centric to Data-centric AI
A Chat with Andrew on MLOps: From Model-centric to Data-centric
AI Improve AI → Improve the quality of the data: consistency error rate diversity coverage feedback frequency size ...
A Chat with Andrew on MLOps: From Model-centric to Data-centric
AI slide credit: A Chat with Andrew on MLOps: From Model-centric to Data-centric AI (https://www.youtube.com/watch?v=06-AZXmwHjo)
사실은, 늘 해오던 일 Project progress month 1 month 2
month 3 month 4 month 5 Code a model Build data Launch training job
사실은, 늘 해오던 일 Building the Software 2.0 Stack (Andrej
Karpathy, 2018)
Question: How many labeled images are needed to solve this
problem?
Answer: 100,000 images?
My Answer: I don’t know. Let’s start from 5,000 WHY?
여전히, 잘 모른다 → Data-centric MLOps Systematic & iterative way
to build Data for ML 단순히 지루한 작업을 자동화하는 과정이 아닌 ML 문제를 해결하기 위한 과정 저는 Superb AI라는 팀에서 이 문제를 풀고 있습니다.
<2달 <30명 <20,000 Images The Problem
The Meta Problem Design Data Spec Build Data Train a
model Deploy to service
Starting Point Labeling Tool Data Label
Reusable Data Spec { project_name: potato_detect_1 data_spec: good_potato: box: color:
red condition: ... bad_potato: box: } { project_name: potato_detect_2 data_spec: good_potato: polygon: color: red condition: ... bad_potato: box: }
Reusable Data Spec { project_name: potato_detect_13 data_spec: best_potato: polygon: direction:
options: ... good_potato: {} normal_potato: {} bad_potato: {} } Goal ≠ Task ALWAYS configured repeatedly name, color, type, conditions, options, property, ROI Info, ...
Support flexible pipeline 100 different problems, 100 different datasets, 100
different ways To support flexible pipeline Build Data Team Model WORKING SUBMITTED REVIEWED
Support flexible pipeline
Versioning Set 단위, 실험 당
ML Engineer를 위해 … ? Detailed Statistics & Report
Human in the loop ^ 2 Human in the loop
ML
Inside Human Labeling Data Human Labeling Service Model Data Labeling
Our Model ? Uncertain? Label-wise Confidence Overall Set Confidence User performance estimate Boost Labeling ... Human in the loop ^ 2
Keep labels consistent
Keep labels consistent
요약
Source data analysis, User analysis, Log, Task matching, etc 여전히
할일이 정말 많다. 마무리 SDK를 이용한 사용 예제!는 다음에 https://github.com/superb-AI-Suite/ Full-pipeline MLOps https://ai-infrastructure.org/