Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data-centric MLOps(이정권)
Search
MLOpsKR
June 05, 2021
Programming
0
1k
Data-centric MLOps(이정권)
MLOps KR(
https://www.facebook.com/groups/mlopskr)에서
주최한 1회 온라인 이벤트 발표 자료입니다
MLOpsKR
June 05, 2021
Tweet
Share
More Decks by MLOpsKR
See All by MLOpsKR
Ray: 대규모 ML인프라를 위한 분산 시스템 프레임워크(조상빈)
mlopskr
0
2.3k
JupyterFlow : 당신의 모델에 날개를 달아드립니다(유홍근)
mlopskr
0
1.1k
모델을 데이터셋에 맞게 대량을 찍어내는 방법(only 파이썬)(김태영)
mlopskr
0
870
KRSH: 선언형 Kubeflow, Terraform처럼 파이프라인 관리하기(김완수)
mlopskr
0
940
MLOps 춘추 전국 시대 정리(변성윤)
mlopskr
0
12k
Other Decks in Programming
See All in Programming
Flutter로 Gemini와 MCP를 활용한 Agentic App 만들기 - 박제창 2025 I/O Extended Seoul
itsmedreamwalker
0
160
Oracle Database Technology Night 92 Database Connection control FAN-AC
oracle4engineer
PRO
1
280
Trem on Rails - Prompt Engineering com Ruby
elainenaomi
1
100
【第4回】関東Kaggler会「Kaggleは執筆に役立つ」
mipypf
0
930
オープンセミナー2025@広島LT技術ブログを続けるには
satoshi256kbyte
0
140
開発チーム・開発組織の設計改善スキルの向上
masuda220
PRO
17
9.1k
サイトを作ったらNFCタグキーホルダーを爆速で作れ!
yuukis
0
680
未来を拓くAI技術〜エージェント開発とAI駆動開発〜
leveragestech
2
190
250830 IaCの選定~AWS SAMのLambdaをECSに乗り換えたときの備忘録~
east_takumi
0
320
CSC305 Summer Lecture 12
javiergs
PRO
0
130
[FEConf 2025] 모노레포 절망편, 14개 레포로 부활하기까지 걸린 1년
mmmaxkim
0
1.3k
Rancher と Terraform
fufuhu
1
130
Featured
See All Featured
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
Designing Experiences People Love
moore
142
24k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
We Have a Design System, Now What?
morganepeng
53
7.8k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
126
53k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
Statistics for Hackers
jakevdp
799
220k
KATA
mclloyd
32
14k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
900
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.8k
Transcript
Data-centric MLOps : 데이터 중심 MLOps를 돕기 위한 작은 장치들
Superb AI 이정권
AI / ML = Model + Data
AI / ML = Model + Data Data centric?
Task Baseline: 70% accuracy Target Performance: 90% accuracy Should the
team improve the code or the data? : code(20%), data(80%) A Chat with Andrew on MLOps: From Model-centric to Data-centric AI
A Chat with Andrew on MLOps: From Model-centric to Data-centric
AI Improve AI → Improve the quality of the data: consistency error rate diversity coverage feedback frequency size ...
A Chat with Andrew on MLOps: From Model-centric to Data-centric
AI slide credit: A Chat with Andrew on MLOps: From Model-centric to Data-centric AI (https://www.youtube.com/watch?v=06-AZXmwHjo)
사실은, 늘 해오던 일 Project progress month 1 month 2
month 3 month 4 month 5 Code a model Build data Launch training job
사실은, 늘 해오던 일 Building the Software 2.0 Stack (Andrej
Karpathy, 2018)
Question: How many labeled images are needed to solve this
problem?
Answer: 100,000 images?
My Answer: I don’t know. Let’s start from 5,000 WHY?
여전히, 잘 모른다 → Data-centric MLOps Systematic & iterative way
to build Data for ML 단순히 지루한 작업을 자동화하는 과정이 아닌 ML 문제를 해결하기 위한 과정 저는 Superb AI라는 팀에서 이 문제를 풀고 있습니다.
<2달 <30명 <20,000 Images The Problem
The Meta Problem Design Data Spec Build Data Train a
model Deploy to service
Starting Point Labeling Tool Data Label
Reusable Data Spec { project_name: potato_detect_1 data_spec: good_potato: box: color:
red condition: ... bad_potato: box: } { project_name: potato_detect_2 data_spec: good_potato: polygon: color: red condition: ... bad_potato: box: }
Reusable Data Spec { project_name: potato_detect_13 data_spec: best_potato: polygon: direction:
options: ... good_potato: {} normal_potato: {} bad_potato: {} } Goal ≠ Task ALWAYS configured repeatedly name, color, type, conditions, options, property, ROI Info, ...
Support flexible pipeline 100 different problems, 100 different datasets, 100
different ways To support flexible pipeline Build Data Team Model WORKING SUBMITTED REVIEWED
Support flexible pipeline
Versioning Set 단위, 실험 당
ML Engineer를 위해 … ? Detailed Statistics & Report
Human in the loop ^ 2 Human in the loop
ML
Inside Human Labeling Data Human Labeling Service Model Data Labeling
Our Model ? Uncertain? Label-wise Confidence Overall Set Confidence User performance estimate Boost Labeling ... Human in the loop ^ 2
Keep labels consistent
Keep labels consistent
요약
Source data analysis, User analysis, Log, Task matching, etc 여전히
할일이 정말 많다. 마무리 SDK를 이용한 사용 예제!는 다음에 https://github.com/superb-AI-Suite/ Full-pipeline MLOps https://ai-infrastructure.org/