Tools:
AI Fairness 360 Toolkit: http://aif360.mybluemix.net/
Model Asset Exchange: http://ibm.biz/model-exchange
Image Segmenter Web App: https://github.com/IBM/MAX-Image-Segmenter-Web-App
Diversity in Faces Dataset: https://www.research.ibm.com/artificial-intelligence/trusted-ai/diversity-in-faces/#acces
IBM's Call for Code Competition: https://callforcode.org/
Sources:
Podcasts/Tweets
https://leanin.org/podcast-episodes/siri-is-artificial-intelligence-biased
https://art19.com/shows/the-ezra-klein-show/episodes/663fd0b7-ee60-4e3e-b2cb-4fcb4040eef1
https://twitter.com/alexisohanian/status/1087973027055316994
Amazon
https://www.aclu.org/blog/privacy-technology/surveillance-technologies/amazons-face-recognition-falsely-matched-28
https://www.openmic.org/news/2019/1/16/halt-rekognition
Google
https://motherboard.vice.com/en_us/article/j5jmj8/google-artificial-intelligence-bias
COMPAS
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.technologyreview.com/s/612775/algorithms-criminal-justice-ai/
Data for Black Lives
Conference Notes: https://docs.google.com/document/d/1E1mfgTp73QFRmNBunl8cIpyUmDos28rekidux0voTsg/edit?ts=5c39f92e
Gender Shades Project
http://news.mit.edu/2018/study-finds-gender-skin-type-bias-artificial-intelligence-systems-0212
https://www.youtube.com/watch?time_continue=1&v=TWWsW1w-BVo
https://www.ajlunited.org/fight
Other resources referenced in this talk:
https://www.nytimes.com/2018/02/12/business/computer-science-ethics-courses.html
https://www.vox.com/science-and-health/2017/4/17/15322378/how-artificial-intelligence-learns-how-to-be-racist
https://www.engadget.com/2019/01/24/pinterest-skin-tone-search-diversity/