Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Metric Learning入門
Search
nishikimi
September 22, 2019
Research
6
4.7k
Metric Learning入門
Metric Learningについて基礎的な内容とArcFaceについて内容をまとめた資料です。
nishikimi
September 22, 2019
Tweet
Share
Other Decks in Research
See All in Research
SegEarth-OV: Towards Training-Free Open-Vocabulary Segmentation for Remote Sensing Images
satai
3
170
VectorLLM: Human-like Extraction of Structured Building Contours via Multimodal LLMs
satai
4
200
引力・斥力を制御可能なランダム部分集合の確率分布
wasyro
0
240
Minimax and Bayes Optimal Best-arm Identification: Adaptive Experimental Design for Treatment Choice
masakat0
0
170
2021年度-基盤研究B-研究計画調書
trycycle
PRO
0
300
「どう育てるか」より「どう働きたいか」〜スクラムマスターの最初の一歩〜
hirakawa51
0
860
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
0
160
心理言語学の視点から再考する言語モデルの学習過程
chemical_tree
2
580
【緊急警告】日本の未来設計図 ~沈没か、再生か。国民と断行するラストチャンス~
yuutakasan
0
150
なめらかなシステムと運用維持の終わらぬ未来 / dicomo2025_coherently_fittable_system
monochromegane
0
2.8k
CVPR2025論文紹介:Unboxed
murakawatakuya
0
150
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
160
Featured
See All Featured
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1.1k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.6k
Documentation Writing (for coders)
carmenintech
74
5k
A designer walks into a library…
pauljervisheath
207
24k
The Invisible Side of Design
smashingmag
301
51k
We Have a Design System, Now What?
morganepeng
53
7.8k
Automating Front-end Workflow
addyosmani
1370
200k
Practical Orchestrator
shlominoach
190
11k
The Art of Programming - Codeland 2020
erikaheidi
56
13k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.5k
Building an army of robots
kneath
306
46k
Transcript
Metric Learning入門 2019/9/25 Rev0
本資料の位置づけ ❏ 読者の想定: Deep LearningでCNNによる画像分類の知識があるが、 Metric Learningに関する知識がない方 ❏ 最終的には、原論文を読んで欲しいですが、 基礎となる情報をスライドにまとめました。
❏ 資料は今後修正&更新していく予定です。
解こうとしているタスク 犬 人 猫 Aさん Bさん Cさん 一般物体認識 (通常の画像分類) 特徴
1クラスあたりのデータ数が少ない より詳細な物体認識 (通常の画像分類) 過学習を起こしやすい
metric learningの全体像 特徴量抽出器 (モデル) 学習時 利用時 ①同じクラスは 距離が近くなるように 学習 *実際には、n次元のベクトルです
②距離(類似度)を算出 検索したい データ
metric learningの全体像 特徴量抽出器 (モデル) 学習時 利用時 ①同じクラスは 距離が近くなるように 学習 *実際には、n次元のベクトルです
②距離(類似度)を算出 検索したい データ 学習時には 1クラス複数枚の 画像が必要 利用時には 1クラス1枚の画像でも よい
metric learningの種類 siamese network triplet network L2 softmax network 発表年
2006年〜 2014年〜 2017年〜 入力形式 2つペアを入力 3つペアを入力 ペア無しで入力 モデルの 概要 ancher
L2 softmax networkの代表的なモデル ・CosFace ・SphereFace ・ArcFace ・AdaCos
ArcFace (列ごとに)正規化 正規化 ① を とみなす ②正解ラベルに対する のみ mのペナルティを与える ① ②
③ ③logitsの値が小さいので logitをs倍する
Toyデータでの結果
None
メリット・デメリット ・通常のクラス分類のモデルに拡張する形なので実装が容易 ・クラス数が多いとパラメータ数が多くなる。 ・(学習時になかった)新しいクラスのデータに対する 予測精度が低い メリット デメリット
ArcFaceのクラス化 ・正規化 ・arcCos ・+mのペナルティ ・s倍のスケール などの一連の処理をクラス化 https://github.com/4uiiurz1/pytorch-adacos
通常の分類モデル の後にmetricモデルの 処理をつなげる インスタンス化
活用できそうなケース ・商品検索 - 例:自動販売機のジュース、コンビニにあるタバコ - 新商品が発売されても、画像が1枚あれば対応可能 ・レコメンド(ランキング) - 例:洋服のECサイトで選択した商品に似たアイテムを表示
参考リンク ・Metric Learning 入門 https://copypaste-ds.hatenablog.com/entry/2019/03/01/164155 ・モダンな深層距離学習 (deep metric learning) 手法:
SphereFace, CosFace, ArcFace https://qiita.com/yu4u/items/078054dfb5592cbb80cc ・ArcFaceの論文 https://arxiv.org/abs/1801.07698 ・Pytorchの実装コード https://github.com/4uiiurz1/pytorch-adacos