Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Metric Learning入門
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
nishikimi
September 22, 2019
Research
6
4.7k
Metric Learning入門
Metric Learningについて基礎的な内容とArcFaceについて内容をまとめた資料です。
nishikimi
September 22, 2019
Tweet
Share
Other Decks in Research
See All in Research
Community Driveプロジェクト(CDPJ)の中間報告
smartfukushilab1
0
170
POI: Proof of Identity
katsyoshi
0
140
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
310
LLM-jp-3 and beyond: Training Large Language Models
odashi
1
760
OWASP KansaiDAY 2025.09_文系OSINTハンズオン
owaspkansai
0
110
ForestCast: Forecasting Deforestation Risk at Scale with Deep Learning
satai
3
390
生成的情報検索時代におけるAI利用と認知バイアス
trycycle
PRO
0
280
Akamaiのキャッシュ効率を支えるAdaptSizeについての論文を読んでみた
bootjp
1
440
2026年1月の生成AI領域の重要リリース&トピック解説
kajikent
0
250
LLMアプリケーションの透明性について
fufufukakaka
0
130
Thirty Years of Progress in Speech Synthesis: A Personal Perspective on the Past, Present, and Future
ktokuda
0
160
Upgrading Multi-Agent Pathfinding for the Real World
kei18
0
200
Featured
See All Featured
Deep Space Network (abreviated)
tonyrice
0
48
Six Lessons from altMBA
skipperchong
29
4.1k
Automating Front-end Workflow
addyosmani
1371
200k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
Building Experiences: Design Systems, User Experience, and Full Site Editing
marktimemedia
0
410
How To Speak Unicorn (iThemes Webinar)
marktimemedia
1
380
Game over? The fight for quality and originality in the time of robots
wayneb77
1
120
Chasing Engaging Ingredients in Design
codingconduct
0
110
Tell your own story through comics
letsgokoyo
1
810
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
52k
Speed Design
sergeychernyshev
33
1.5k
Building Adaptive Systems
keathley
44
2.9k
Transcript
Metric Learning入門 2019/9/25 Rev0
本資料の位置づけ ❏ 読者の想定: Deep LearningでCNNによる画像分類の知識があるが、 Metric Learningに関する知識がない方 ❏ 最終的には、原論文を読んで欲しいですが、 基礎となる情報をスライドにまとめました。
❏ 資料は今後修正&更新していく予定です。
解こうとしているタスク 犬 人 猫 Aさん Bさん Cさん 一般物体認識 (通常の画像分類) 特徴
1クラスあたりのデータ数が少ない より詳細な物体認識 (通常の画像分類) 過学習を起こしやすい
metric learningの全体像 特徴量抽出器 (モデル) 学習時 利用時 ①同じクラスは 距離が近くなるように 学習 *実際には、n次元のベクトルです
②距離(類似度)を算出 検索したい データ
metric learningの全体像 特徴量抽出器 (モデル) 学習時 利用時 ①同じクラスは 距離が近くなるように 学習 *実際には、n次元のベクトルです
②距離(類似度)を算出 検索したい データ 学習時には 1クラス複数枚の 画像が必要 利用時には 1クラス1枚の画像でも よい
metric learningの種類 siamese network triplet network L2 softmax network 発表年
2006年〜 2014年〜 2017年〜 入力形式 2つペアを入力 3つペアを入力 ペア無しで入力 モデルの 概要 ancher
L2 softmax networkの代表的なモデル ・CosFace ・SphereFace ・ArcFace ・AdaCos
ArcFace (列ごとに)正規化 正規化 ① を とみなす ②正解ラベルに対する のみ mのペナルティを与える ① ②
③ ③logitsの値が小さいので logitをs倍する
Toyデータでの結果
None
メリット・デメリット ・通常のクラス分類のモデルに拡張する形なので実装が容易 ・クラス数が多いとパラメータ数が多くなる。 ・(学習時になかった)新しいクラスのデータに対する 予測精度が低い メリット デメリット
ArcFaceのクラス化 ・正規化 ・arcCos ・+mのペナルティ ・s倍のスケール などの一連の処理をクラス化 https://github.com/4uiiurz1/pytorch-adacos
通常の分類モデル の後にmetricモデルの 処理をつなげる インスタンス化
活用できそうなケース ・商品検索 - 例:自動販売機のジュース、コンビニにあるタバコ - 新商品が発売されても、画像が1枚あれば対応可能 ・レコメンド(ランキング) - 例:洋服のECサイトで選択した商品に似たアイテムを表示
参考リンク ・Metric Learning 入門 https://copypaste-ds.hatenablog.com/entry/2019/03/01/164155 ・モダンな深層距離学習 (deep metric learning) 手法:
SphereFace, CosFace, ArcFace https://qiita.com/yu4u/items/078054dfb5592cbb80cc ・ArcFaceの論文 https://arxiv.org/abs/1801.07698 ・Pytorchの実装コード https://github.com/4uiiurz1/pytorch-adacos