過去の失敗 ◦ 2. ~ 3.を繰り返すことでデータバージョンの変化に伴いラベルの細分化や属性の追加削除が行 われる場合がある ◦ DataLoader等でフォーマットの差分を吸収していたがコードの運用等で複雑になりがち ◦ 結果的に過去分データセットのなかで必要な量のアノテーションを再実施 • 学び ◦ データセット単位でのラベルの一貫性を担保 ▪ ラベルが収束するまでフィードバックを繰り返す ▪ Andrew Ng氏の講義やDRIVE CHARTの例からも様々な方法がある ◦ プロジェクト単位でのアノテーション仕様の一貫性を担保 ▪ 新規プロジェクトの場合、理想のフォーマットに到達するためには試行錯誤が必要 ▪ 対処療法を積み重ねるよりは都度あるべき姿に修正したほうが運用ストレスは少ない 中長期プロジェクト視点での一貫性のあるデータの作り方