Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Making Data Pretty (and understandable)

Making Data Pretty (and understandable)

A 15-minute presentation to the Python in Astronomy workshop in Seattle. http://python-in-astronomy.github.io/2016/program.html

Michele Bannister

March 23, 2016
Tweet

More Decks by Michele Bannister

Other Decks in Science

Transcript

  1. colour palettes what sort of data do you have? chart

    junk cleaning up plots packages that can make life easier
  2. colour palettes sequential diverging qualitative learn more: Cynthia Brewer’s colorbrewer

    http://colorbrewer2.org/ Try your plots in different perception spaces http://www.vischeck.com/
  3. heliocentric distance (AU) 0 10 20 30 40 50 inclination

    (degrees) 0 10 20 30 40 50 inclination (degrees) 1:1 2:1 3:2 5:2 7:3 7:4 5:3 11:4 8:5 15:8 13:5 25 30 35 40 45 50 55 60 65 70 75 80 85 semimajor axis (AU) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 eccentricity 1:1 2:1 3:2 5:2 7:3 7:4 5:3 11:4 8:5 15:8 13:5 classical resonant scattering detached o3e45
  4. 0 5 10 15 20 25 30 35 40 inclination

    (degrees) 38 39 40 41 42 43 44 45 46 47 48 49 semimajor axis (AU) 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 eccentricity 2:1 3:2 7:4 centaur classical resonant scattering detached
  5. packages for pleasing plots palettable seaborn (has superseded prettyplotlib) for

    web approaches: d3.js bokeh plotly https://plot.ly/python/#scientific-charts (mpld3 no longer under active development)
  6. The greatest value of a picture plot is when it

    forces us to notice what we never expected to see. J. Tukey, Exploratory Data Analysis, 1977