Upgrade to Pro — share decks privately, control downloads, hide ads and more …

RustでDeepQNetworkを実装する

 RustでDeepQNetworkを実装する

Rustで強化学習アルゴリズムをフルスクラッチで実装します。
ニューラルネット部分はtch-rsを用いています。

Transcript

  1. 7 tch-rsとcandle • tch-rs(https://github.com/LaurentMazare/tch-rs) ◦ メリット ▪ コアの部分がPytorchなので実績と信頼性は⼗分 ◦ デメリット

    ▪ Pytorchの全機能をRustから呼べるわけではない ▪ しかし、全機能を含んだコア部分をinstallするので重くなりがち • candle(https://github.com/huggingface/candle) ◦ メリット ▪ Pure Rustなので、Rustから使う場合は型推論周りは良い ▪ パッケージが軽い、WebAssenbly対応 ◦ デメリット ▪ Pytorchと⽐べてまだ実績が少ない
  2. 9 今後の展望 • [WIP] Proximal Policy Optimizationの実装 ◦ PPO論⽂:https://arxiv.org/abs/1707.06347 •

    Soft Actor Criticの実装 ◦ SAC論⽂:https://arxiv.org/abs/1801.01290 • リプレイバッファから経験をサンプリングするときに優先度を設ける ◦ Prioritized Replay Buffer論⽂:https://arxiv.org/abs/1511.05952 • 好奇⼼報酬による探索の効率化の導⼊ ◦ RND論⽂:https://arxiv.org/abs/1810.12894 ◦ SND論⽂:https://arxiv.org/abs/2302.11563