Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介:SemEval(SENSEVAL)におけるWSDタスクについて
Search
Shohei Okada
February 02, 2015
Research
1
350
文献紹介:SemEval(SENSEVAL)におけるWSDタスクについて
Shohei Okada
February 02, 2015
Tweet
Share
More Decks by Shohei Okada
See All by Shohei Okada
たった 1 枚の PHP ファイルで実装する MCP サーバ / MCP Server with Vanilla PHP
okashoi
1
510
どうして手を動かすよりもチーム内のコードレビューを優先するべきなのか
okashoi
2
1.6k
パスワードのハッシュ、ソルトってなに? - What is hash and salt for password?
okashoi
3
270
設計の考え方 - インターフェースと腐敗防止層編 #phpconfuk / Interface and Anti Corruption Layer
okashoi
11
4.6k
"config" ってなんだ? / What is "config"?
okashoi
0
1.4k
ファイル先頭の use の意味、説明できますか? 〜PHP の namespace と autoloading の関係を正しく理解しよう〜 / namespace and autoloading in php
okashoi
4
1.8k
MySQL のインデックスの種類をおさらいしよう! / overviewing indexes in MySQL
okashoi
0
1k
PHP における静的解析(あるいはそもそも静的解析とは) / #phpcondo_yasai static analysis for PHP
okashoi
1
730
【PHPカンファレンス沖縄 2023】素朴で考慮漏れのある PHP コードをテストコードとともに補強していく(ライブコーディング補足資料) / #phpcon_okinawa 2023 livecoding supplementary material
okashoi
3
2k
Other Decks in Research
See All in Research
IMC の細かすぎる話 2025
smly
2
700
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
230
Stealing LUKS Keys via TPM and UUID Spoofing in 10 Minutes - BSides 2025
anykeyshik
0
150
GPUを利用したStein Particle Filterによる点群6自由度モンテカルロSLAM
takuminakao
0
420
アニメにおける宇宙猫ミームとその表現
yttrium173340
0
100
Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
satai
3
130
機械学習と数理最適化の融合 (MOAI) による革新
mickey_kubo
1
400
Google Agent Development Kit (ADK) 入門 🚀
mickey_kubo
2
2.2k
単施設でできる臨床研究の考え方
shuntaros
0
3.1k
カスタマーサクセスの視点からAWS Summitの展示を考える~製品開発で活用できる勘所~
masakiokuda
2
210
[CV勉強会@関東 CVPR2025] VLM自動運転model S4-Driver
shinkyoto
2
540
なめらかなシステムと運用維持の終わらぬ未来 / dicomo2025_coherently_fittable_system
monochromegane
0
4.1k
Featured
See All Featured
The Power of CSS Pseudo Elements
geoffreycrofte
80
6k
The Language of Interfaces
destraynor
162
25k
Facilitating Awesome Meetings
lara
57
6.6k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Fireside Chat
paigeccino
41
3.7k
Building Better People: How to give real-time feedback that sticks.
wjessup
369
20k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Agile that works and the tools we love
rasmusluckow
331
21k
GitHub's CSS Performance
jonrohan
1032
470k
Build your cross-platform service in a week with App Engine
jlugia
233
18k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
Transcript
文献紹介 2015/02/02 長岡技術科学大学 自然言語処理研究室 岡田 正平
今回の文献紹介の趣旨 • SemEval (SENSEVAL) のWSDタスクについて紹介 – Lexical Sample – All-Words
– Monolingual – Multilingual – Cross-lingual 2015/02/02 文献紹介 2
WSDタスクの実施状況 Area S1 S2 S3 SE07 SE10 SE12 SE13 SE14
Lexical Sample ✓ ✓ ✓ ✓ ✓ All-Words ✓ ✓ ✓ ✓ ✓ Multilingual ✓ Cross-lingual ✓ ✓ 2015/02/02 文献紹介 3 ※参考:Wikipedia “SemEval” (http://en.wikipedia.org/wiki/SemEval)
All-Words The English All-Words Task Benjamin Snyder and Martha Palmer
In Senseval-3: Third International Workshop on the Evaluation of Systems for the Semantic Analysis of Text, pp. 41-43. 2004. 2015/02/02 文献紹介 4
All-Words • 与えられた文中の全内容語をWordNet中の語義に割り当 てる • 構文解析とPOS-tagの情報は与えられる 2015/02/02 文献紹介 5
Test Corpus • Wall Street Journal と Brown Corpus から得られた約
5,000語の内容語を対象 • 作業者2人によるアノテーション後,別の作業者による 確認・修正 – WordNet中に適切な項目がある場合は複合語も可 – 複数語義に割当てることも可(できるだけ避ける) – 「WordNet中に無い」も可 • 最終的に2,211語 2015/02/02 文献紹介 6
Lexical Sample The Senseval-3 English lexical sample task Rada Mihalcea,
Timothy Chklovski and Adam Kilgarriff In Senseval-3: Third International Workshop on the Evaluation of Systems for the Semantic Analysis of Text, pp. 25-28. 2004. 2015/02/02 文献紹介 7
コーパスの構築 • British National Corpus, Penn Treebank corpus, Los Angeles
Times collection から抽出された文を利用 • 語義目録は WordNet 1.7.1 のものを利用 – ただし動詞は Wordsmyth のものを利用 • SENSEVAL2において動詞に対する性能が低かった ため • 語義の粒度が細かすぎたためと思われる • 対象語は57語(名詞20語,動詞32語,形容詞5語) 2015/02/02 文献紹介 8
コーパスの構築 • Web上のボランティアを利用 – 対象語を含む文をコーパスから抽出 – 作業者に提示し,最も適切な語義を選ばせる • チェックボックによる選択(複数可) •
“unclear”と”none of the above” を選択可 • 他者の回答は表示されない – 2人の回答が一致したらタグ付けされる(最大4人) 2015/02/02 文献紹介 9
Multilingual WSD SemEval-2013 Task 12: Multilingual Word Sense Disambiguation Roberto
Navigli, David Jurgens and Daniele Vannella In Proc. of SemEval 2013, pp. 222-231. 2013. 2015/02/02 文献紹介 10
Task Setup • 対象となる名詞を最も適切な語義に割り当てる – 語義はBabelNet • 2010, 2011, 2012
の workshop on SMT の データセットより13記事 – English, French, German, Spanish – さらに人手で English → Italian の翻訳 2015/02/02 文献紹介 11
語義目録 • BabelNet 1.1.1 – 単語,複合語,固有名詞を含む – Wikipedia や WordNet
3.0 等から作られている – synset は同じ概念に対する複数言語の表現集合 {Globus aerostàticCA , BalloonEN , AérostationFR , BallonDE , Pallone aerostaticoIT , ..., Globo aerostáticoES } 2015/02/02 文献紹介 12
Sense Annotation • 各言語の母語話者がアノテーション – English, French, German, Spanish: 各言語1人
– Italian: 2人 2015/02/02 文献紹介 13
Sense Annotation 各作業者が 1. 見出し語に付けられているPOSは正しいか 2. 複合語または固有名詞のアノテーションは正しいか 3. 見出し語の意味がBabelNetに割り当てられているか をチェックする(正しくないものは取り除かれる)
2015/02/02 文献紹介 14
Sense Annotation • 英語のデータセット中の語をBebelNetの語義に 割り当てる • 英語でアノテーションされたものを他言語に写像 – 対応する英文中の語の語義に含まれる場合にその語 義に割り当てる
• 各言語の作業者によって修正 • 異なる作業者が高頻度の見出し語について確認 2015/02/02 文献紹介 15
Cross-lingual WSD SemEval-2013 Task 10: Cross-lingual Word Sense Disambiguation Els
Lefever and Véronique Hoste In Proc. of SemEval 2013, pp. 158-166. 2013. 2015/02/02 文献紹介 16
Cross-lingual WSD その文脈において正しい訳語を選択する “Je cherche des idées pour manger de
l’avocat” (French→English) – 正しい訳語 “avocat” → “avocado” – 誤った訳語 “avocat” → “lawyer” 2015/02/02 文献紹介 17
Task setup • 英語の名詞に対する教師なしWSDタスク – 英語の名詞 20 個 • 語義目録は
Europarl parallel corpus に基づく • 対象言語: French, Italian, Spanish, Dutch, German 2015/02/02 文献紹介 18
Motivations • パラレルコーパスを利用することで,データの作成時の ボトルネックを解決可能 – 語義のタグ付けが不要 – 同様のフレームワークが多言語にも適用可 2015/02/02 文献紹介
19
Motivations • 語義の粒度の問題 – 必ずしも細かい粒度が必要ではない “head” (English) は常に “hoofd” (Dutch)に翻訳できる
(頭と組織の長の両方の意味を持つ) – 領域特化のコーパスを利用することで, その領域向きの語義目録が作成可 2015/02/02 文献紹介 20
Motivations • 言語横断のものに即座に応用可能 – 機械翻訳 – 情報検索 2015/02/02 文献紹介 21
語義目録の作成 英語と対象言語間で1文対1文になっているものを利用 1. 対訳コーパスにおいて単語アライメントを行い, 対象名詞の翻訳を列挙する 2. 得られた翻訳をクラスタリングし,人手で見出し語化 2015/02/02 文献紹介 22
テストデータ • ANCコーパスより人手で各名詞に対して50文を選択 • 対象言語ごとに3人の作業者 1. 最も適切な語義(クラスタ)を選択 2. 適切な翻訳を3つまで,そのクラスタより選択 2015/02/02
文献紹介 23
subtasks • best evaluation – システムはいくつでも答えを提示可能 – 提示した数によってスコアが割られる • Out-of-five
– システムは5つまで答えを提示可能 – 誤った答えに対するペナルティは無し 2015/02/02 文献紹介 24
WSDタスクの実施状況 Area S1 S2 S3 SE07 SE10 SE12 SE13 SE14
Lexical Sample ✓ ✓ ✓ ✓ ✓ All-Words ✓ ✓ ✓ ✓ ✓ Multilingual ✓ Cross-lingual ✓ ✓ 2015/02/02 文献紹介 25 ※参考:Wikipedia “SemEval” (http://en.wikipedia.org/wiki/SemEval)