Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PydanticAIの基本と活用
Search
yuuki shimizu
December 05, 2024
Programming
0
73
PydanticAIの基本と活用
yuuki shimizu
December 05, 2024
Tweet
Share
More Decks by yuuki shimizu
See All by yuuki shimizu
Anthropicが発表したClioについて
olivemochi23
0
40
Introducing the Model Context Protocol
olivemochi23
0
65
「12月6日発表 中小企業支援策・補助金最新情報
olivemochi23
0
25
多様性を重視した集団ベースのモデルマージ
olivemochi23
0
37
ファイブフォース分析まとめ
olivemochi23
1
28
Anthropic のMCPについて
olivemochi23
0
78
Other Decks in Programming
See All in Programming
Rubyでやりたい駆動開発 / Ruby driven development
chobishiba
1
470
datadog dash 2025 LLM observability for reliability and stability
ivry_presentationmaterials
0
180
生成AIコーディングとの向き合い方、AIと共創するという考え方 / How to deal with generative AI coding and the concept of co-creating with AI
seike460
PRO
1
340
iOSアプリ開発で 関数型プログラミングを実現する The Composable Architectureの紹介
yimajo
2
220
たった 1 枚の PHP ファイルで実装する MCP サーバ / MCP Server with Vanilla PHP
okashoi
1
210
Composerが「依存解決」のためにどんな工夫をしているか #phpcon
o0h
PRO
1
240
LT 2025-06-30: プロダクトエンジニアの役割
yamamotok
0
560
Deep Dive into ~/.claude/projects
hiragram
10
1.7k
AWS CDKの推しポイント 〜CloudFormationと比較してみた〜
akihisaikeda
3
320
なぜ適用するか、移行して理解するClean Architecture 〜構造を超えて設計を継承する〜 / Why Apply, Migrate and Understand Clean Architecture - Inherit Design Beyond Structure
seike460
PRO
1
700
Benchmark
sysong
0
270
Cline指示通りに動かない? AI小説エージェントで学ぶ指示書の書き方と自動アップデートの仕組み
kamomeashizawa
1
580
Featured
See All Featured
RailsConf 2023
tenderlove
30
1.1k
Docker and Python
trallard
44
3.4k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Code Reviewing Like a Champion
maltzj
524
40k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.4k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
17
950
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Making Projects Easy
brettharned
116
6.3k
Transcript
PydanticAIの基本と活⽤ PydanticAIは、PythonでのLLM活⽤を加速するフレームワークである。こ のプレゼンテーションでは、PydanticAIの全体像と特徴を解説し、開発者 やAI·データサイエンスに関⼼を持つ幅広い聴衆に向けて、その活⽤⽅法 を紹介する。 by yuuki shimizu YS
PydanticAIとは? 定義 PythonでGenerative AIを簡単 かつ効率的に活⽤するための フレームワークである。エー ジェント構造でコードの再利 ⽤性が⾼く、プロダクション レベルのアプリケーション開 発を⽀援する。
特徴 モデル⾮依存、型安全性、 Pydanticとの統合、柔軟なツ ールシステム、監視機能を備 えている。 LLM連携 OpenAI、Gemini、Groqなど、様々なLLMと連携可能である。
なぜPydanticAIを選ぶべきか 他のフレームワークとの違い PydanticAIは、Pydanticの特性を最⼤限 活⽤し、LLM活⽤のベストプラクティ スを提供する。 具体的なメリット 簡単な初期設定、⾼度な拡張性、豊富 な応⽤例を持つ。少ないコードでエー ジェントが構築可能で、型安全な依存 関係を導⼊し、テストがしやすい。
ユースケース チャットボット開発、⾃然⾔語による データベース操作、タスクの⾃動化な ど、実⽤性が⾼い。
基朷構造 1 エージェント LLMインターフェースの中⼼ 2 システムプロンプト LLMへの初期指⽰ 3 ツール 外部関数やデータ取得ロジック
4 構造化レスポンス 出⼒の型やデータ形式定義 5 依存関係 テスト可能な外部データ注⼊ 開発者は最⼩限のコードでエージェントを定義し、再利⽤できる。基朷的な使⽤例では、OpenAIのGPT-4モデルを使⽤し、1⽂で 簡潔に回答するエージェントを作成できる。
実践例 銀⾏サポートエージェン ト 顧客名や残⾼を取得し、ユー ザー問い合わせに応答する。 型安全な依存関係を使⽤して 顧客データを注⼊する。 ダイスゲームエージェン ト ユーザーの予想をもとにサイ
コロを振り、結果を⽣成す る。モデルとツールの連携例 として簡潔で分かりやすい。
PydanticAIの主要機能 1 システムプロンプト 静的プロンプト(コード内で定義)と動的プロンプト (実⾏時に⽣成)の併⽤が可能である。 2 ツールの登録⽅法 @agent.toolでコンテキストを使うツールを登録し、tools パラメータで複数ツールをまとめて登録できる。 3
リフレクションと⾃⼰修正 モデルが不完全な応答を返した場合、リトライして改善 を試みる仕組みを持つ。
導⼊とセットアップ 1 インストール pip install pydantic-ai コマンドでインストールする。 2 環境変数設定 必要な環境変数(例:OPENAI_API_KEY)を設定する。
3 サンプル実⾏ python -m pydantic_ai_examples.pydantic_model コマンドで 動作確認が可能である。
開発プロセス 1 エージェントの作成 システムプロンプト、依存関係、レスポンス型を定義する。 2 ツールの登録 必要に応じて外部機能を追加する。 3 実⾏とデバッグ エラーやモデルの応答を確認しながら調整する。
4 モニタリング Logfireを使い、パフォーマンスを追跡する。
応⽤シナリオ RAG Retrieval-Augmented Generation。モデルに動的なデータを提供して回答精 度を向上させる。 チャットボット メッセージ履歴を利⽤して会話を継続する。 業務⽀援 カスタマーサポートや技術⽀援などの実⽤的なアプリケーションを構築 できる。
まとめと次のステップ PydanticAIの利点 型安全性とツールの柔軟性に より⽣産性が向上し、モデル ⾮依存性で多様なアプリケー ションに対応できる。 次のステップ 実例コードを試し、プロジェ クトに導⼊する。ドキュメン トやAPIリファレンスを活⽤
して理解を深める。