Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Principal type-schemes for functional programs
Search
Phil Freeman
June 28, 2017
Programming
0
330
Principal type-schemes for functional programs
Phil Freeman
June 28, 2017
Tweet
Share
More Decks by Phil Freeman
See All by Phil Freeman
The Future Is Comonadic!
paf31
14
4.7k
Incremental Programming in PureScript
paf31
3
990
An Overview of the PureScript Type System
paf31
5
1.9k
Fun with Profunctors
paf31
3
1.2k
Intro to psc-package
paf31
0
150
Stack Safety for Free
paf31
0
310
Other Decks in Programming
See All in Programming
JSONataを使ってみよう Step Functionsが楽しくなる実践テクニック #devio2025
dafujii
1
640
1から理解するWeb Push
dora1998
7
1.9k
Performance for Conversion! 分散トレーシングでボトルネックを 特定せよ
inetand
0
3.4k
はじめてのMaterial3 Expressive
ym223
2
900
さようなら Date。 ようこそTemporal! 3年間先行利用して得られた知見の共有
8beeeaaat
3
1.5k
RDoc meets YARD
okuramasafumi
4
170
MCPでVibe Working。そして、結局はContext Eng(略)/ Working with Vibe on MCP And Context Eng
rkaga
5
2.3k
ユーザーも開発者も悩ませない TV アプリ開発 ~Compose の内部実装から学ぶフォーカス制御~
taked137
0
190
知っているようで知らない"rails new"の世界 / The World of "rails new" You Think You Know but Don't
luccafort
PRO
1
190
時間軸から考えるTerraformを使う理由と留意点
fufuhu
16
4.8k
基礎から学ぶ大画面対応(Learning Large-Screen Support from the Ground Up)
tomoya0x00
0
4.3k
ぬるぬる動かせ! Riveでアニメーション実装🐾
kno3a87
1
230
Featured
See All Featured
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.5k
Being A Developer After 40
akosma
90
590k
Writing Fast Ruby
sferik
628
62k
A better future with KSS
kneath
239
17k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.9k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
For a Future-Friendly Web
brad_frost
180
9.9k
Making Projects Easy
brettharned
117
6.4k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.5k
Documentation Writing (for coders)
carmenintech
74
5k
Typedesign – Prime Four
hannesfritz
42
2.8k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.4k
Transcript
Principal type-schemes for functional programs Luis Damas and Robin Milner
(POPL `82)
Agenda • Slides • Code
ML • Meta Language for LCF • Type inference •
Influence on Haskell, Rust, F#, OCaml, ... • “Sweet spot” in type system design
ML letrec f xs = if null xs then nil
else snoc (f (tl xs)) (hd xs) What type does this function have? null : ∀ ( list → bool) snoc : ∀ ( list → → list) hd, tl : ∀ ( list → ) nil : ∀ ( list)
ML What about: let s x y z = x
z (y z) ?
Type Inference f : ∀ ( list → list) •
Given f, how can we infer this type? • What does it even mean for a value to have a type? • How can we be sure we have the most general type?
Lambda Calculus Expressions e: • Identifiers: , , … •
Applications: e e’ • Abstractions: . e • Let bindings: let = e in e’
Lambda Calculus For example: . . . . let =
. . in
Types Monotypes : • Variables: • Primitives: • Functions: →
Type Schemes Type schemes : • Monomorphic: • Polymorphic: ∀
. Type schemes are types with identifiers bound by ∀ at the front.
Substitutions Mappings from variables to types • Can instantiate type
schemes using substitutions • Gives a simple subtyping relation on type schemes
Semantics Construct a semantic domain (CPO) V containing • Primitives
• Functions • An error element and a semantic function : e → (Id → V) → V
Semantics Identify types with subsets of V Define the judgment
A ╞ e : when (∀ ( : ’) ∈ A. ∈ ’) ⇒ e ∈
Declarative System Variable rule:
Declarative System Application rule:
Declarative System Abstraction rule:
Declarative System Let rule:
Declarative System Instantiation rule:
Declarative System Generalization rule:
Soundness If A e : then A ╞ e :
“Static behavior determines dynamic behavior”
Example Prove: . : ∀ . ( → → )
→ →
Algorithm W • The inference rules do not translate easily
into an algorithm (why not?) • Introduce w : Exp → Env → (Env, )
Algorithm W • W attempts to build a substitution, bottom-up
• W can fail with an error if there is no valid typing • Intuition: ◦ Collect constraints ◦ Then solve constraints • Reality: W is the fusion of these two steps • See the code!
Unification • Unification gives local information about types • We
assemble a global solution from local information
Unification Example: ( → ) ~ (( → ) →
) ~ ( → ) ~ ~ ( → )
Occurs Check Prevents inference of infinite types w( . ,
nil) = error! Can’t unify ~ if occurs in the body of . E.g. ~ → ~ ((… → ) → ) →
Soundness If w(A, e) = (S, ) then A e
: “Algorithm W constructs typing judgments”
Completeness If A e : then w(A, e) constructs a
typing judgment for e which generalises the above. “Algorithm W constructs principal types”
Further Reading More type systems • System F, F⍵ •
Rank-N types • Type Classes • Dependent Types • Refinement Types Other approaches • Constraints • Bidirectional typechecking • SMT See TAPL & ATAPL!
Acknowledgments DHM axioms reproduced from Wikipedia under the CC-3.0 Attribution/ShareAlike
license