Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Principal type-schemes for functional programs
Search
Phil Freeman
June 28, 2017
Programming
0
360
Principal type-schemes for functional programs
Phil Freeman
June 28, 2017
Tweet
Share
More Decks by Phil Freeman
See All by Phil Freeman
The Future Is Comonadic!
paf31
14
4.8k
Incremental Programming in PureScript
paf31
3
1k
An Overview of the PureScript Type System
paf31
5
2k
Fun with Profunctors
paf31
3
1.3k
Intro to psc-package
paf31
0
170
Stack Safety for Free
paf31
0
360
Other Decks in Programming
See All in Programming
メルカリのリーダビリティチームが取り組む、AI時代のスケーラブルな品質文化
cloverrose
2
510
開発者から情シスまで - 多様なユーザー層に届けるAPI提供戦略 / Postman API Night Okinawa 2026 Winter
tasshi
0
180
Grafana:建立系統全知視角的捷徑
blueswen
0
320
ZJIT: The Ruby 4 JIT Compiler / Ruby Release 30th Anniversary Party
k0kubun
1
390
AIエージェントの設計で注意するべきポイント6選
har1101
7
3.4k
組織で育むオブザーバビリティ
ryota_hnk
0
160
AI によるインシデント初動調査の自動化を行う AI インシデントコマンダーを作った話
azukiazusa1
1
650
Vibe Coding - AI 驅動的軟體開發
mickyp100
0
170
QAフローを最適化し、品質水準を満たしながらリリースまでの期間を最短化する #RSGT2026
shibayu36
2
4.2k
0→1 フロントエンド開発 Tips🚀 #レバテックMeetup
bengo4com
0
540
AI時代のキャリアプラン「技術の引力」からの脱出と「問い」へのいざない / tech-gravity
minodriven
15
5.2k
公共交通オープンデータ × モバイルUX 複雑な運行情報を 『直感』に変換する技術
tinykitten
PRO
0
200
Featured
See All Featured
The Director’s Chair: Orchestrating AI for Truly Effective Learning
tmiket
1
90
Accessibility Awareness
sabderemane
0
47
YesSQL, Process and Tooling at Scale
rocio
174
15k
Game over? The fight for quality and originality in the time of robots
wayneb77
1
97
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
1.1k
Color Theory Basics | Prateek | Gurzu
gurzu
0
190
職位にかかわらず全員がリーダーシップを発揮するチーム作り / Building a team where everyone can demonstrate leadership regardless of position
madoxten
55
50k
Are puppies a ranking factor?
jonoalderson
1
2.7k
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
67
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.4k
Leadership Guide Workshop - DevTernity 2021
reverentgeek
1
200
Transcript
Principal type-schemes for functional programs Luis Damas and Robin Milner
(POPL `82)
Agenda • Slides • Code
ML • Meta Language for LCF • Type inference •
Influence on Haskell, Rust, F#, OCaml, ... • “Sweet spot” in type system design
ML letrec f xs = if null xs then nil
else snoc (f (tl xs)) (hd xs) What type does this function have? null : ∀ ( list → bool) snoc : ∀ ( list → → list) hd, tl : ∀ ( list → ) nil : ∀ ( list)
ML What about: let s x y z = x
z (y z) ?
Type Inference f : ∀ ( list → list) •
Given f, how can we infer this type? • What does it even mean for a value to have a type? • How can we be sure we have the most general type?
Lambda Calculus Expressions e: • Identifiers: , , … •
Applications: e e’ • Abstractions: . e • Let bindings: let = e in e’
Lambda Calculus For example: . . . . let =
. . in
Types Monotypes : • Variables: • Primitives: • Functions: →
Type Schemes Type schemes : • Monomorphic: • Polymorphic: ∀
. Type schemes are types with identifiers bound by ∀ at the front.
Substitutions Mappings from variables to types • Can instantiate type
schemes using substitutions • Gives a simple subtyping relation on type schemes
Semantics Construct a semantic domain (CPO) V containing • Primitives
• Functions • An error element and a semantic function : e → (Id → V) → V
Semantics Identify types with subsets of V Define the judgment
A ╞ e : when (∀ ( : ’) ∈ A. ∈ ’) ⇒ e ∈
Declarative System Variable rule:
Declarative System Application rule:
Declarative System Abstraction rule:
Declarative System Let rule:
Declarative System Instantiation rule:
Declarative System Generalization rule:
Soundness If A e : then A ╞ e :
“Static behavior determines dynamic behavior”
Example Prove: . : ∀ . ( → → )
→ →
Algorithm W • The inference rules do not translate easily
into an algorithm (why not?) • Introduce w : Exp → Env → (Env, )
Algorithm W • W attempts to build a substitution, bottom-up
• W can fail with an error if there is no valid typing • Intuition: ◦ Collect constraints ◦ Then solve constraints • Reality: W is the fusion of these two steps • See the code!
Unification • Unification gives local information about types • We
assemble a global solution from local information
Unification Example: ( → ) ~ (( → ) →
) ~ ( → ) ~ ~ ( → )
Occurs Check Prevents inference of infinite types w( . ,
nil) = error! Can’t unify ~ if occurs in the body of . E.g. ~ → ~ ((… → ) → ) →
Soundness If w(A, e) = (S, ) then A e
: “Algorithm W constructs typing judgments”
Completeness If A e : then w(A, e) constructs a
typing judgment for e which generalises the above. “Algorithm W constructs principal types”
Further Reading More type systems • System F, F⍵ •
Rank-N types • Type Classes • Dependent Types • Refinement Types Other approaches • Constraints • Bidirectional typechecking • SMT See TAPL & ATAPL!
Acknowledgments DHM axioms reproduced from Wikipedia under the CC-3.0 Attribution/ShareAlike
license