Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Principal type-schemes for functional programs
Search
Phil Freeman
June 28, 2017
Programming
0
260
Principal type-schemes for functional programs
Phil Freeman
June 28, 2017
Tweet
Share
More Decks by Phil Freeman
See All by Phil Freeman
The Future Is Comonadic!
paf31
14
4.4k
Incremental Programming in PureScript
paf31
3
920
An Overview of the PureScript Type System
paf31
5
1.8k
Fun with Profunctors
paf31
3
1k
Intro to psc-package
paf31
0
120
Stack Safety for Free
paf31
0
250
Other Decks in Programming
See All in Programming
ローコードSaaSのUXを向上させるためのTypeScript
taro28
1
610
AWS IaCの注目アップデート 2024年10月版
konokenj
3
3.3k
詳細解説! ArrayListの仕組みと実装
yujisoftware
0
580
Streams APIとTCPフロー制御 / Web Streams API and TCP flow control
tasshi
2
350
見せてあげますよ、「本物のLaravel批判」ってやつを。
77web
7
7.7k
最新TCAキャッチアップ
0si43
0
140
Why Jakarta EE Matters to Spring - and Vice Versa
ivargrimstad
0
1k
よくできたテンプレート言語として TypeScript + JSX を利用する試み / Using TypeScript + JSX outside of Web Frontend #TSKaigiKansai
izumin5210
6
1.7k
Duckdb-Wasmでローカルダッシュボードを作ってみた
nkforwork
0
120
RubyLSPのマルチバイト文字対応
notfounds
0
120
役立つログに取り組もう
irof
28
9.6k
ECS Service Connectのこれまでのアップデートと今後のRoadmapを見てみる
tkikuc
2
250
Featured
See All Featured
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
131
33k
Fontdeck: Realign not Redesign
paulrobertlloyd
82
5.2k
Rails Girls Zürich Keynote
gr2m
94
13k
KATA
mclloyd
29
14k
The Art of Programming - Codeland 2020
erikaheidi
52
13k
Keith and Marios Guide to Fast Websites
keithpitt
409
22k
How to Ace a Technical Interview
jacobian
276
23k
The Cost Of JavaScript in 2023
addyosmani
45
6.7k
Fashionably flexible responsive web design (full day workshop)
malarkey
405
65k
Product Roadmaps are Hard
iamctodd
PRO
49
11k
Done Done
chrislema
181
16k
GraphQLとの向き合い方2022年版
quramy
43
13k
Transcript
Principal type-schemes for functional programs Luis Damas and Robin Milner
(POPL `82)
Agenda • Slides • Code
ML • Meta Language for LCF • Type inference •
Influence on Haskell, Rust, F#, OCaml, ... • “Sweet spot” in type system design
ML letrec f xs = if null xs then nil
else snoc (f (tl xs)) (hd xs) What type does this function have? null : ∀ ( list → bool) snoc : ∀ ( list → → list) hd, tl : ∀ ( list → ) nil : ∀ ( list)
ML What about: let s x y z = x
z (y z) ?
Type Inference f : ∀ ( list → list) •
Given f, how can we infer this type? • What does it even mean for a value to have a type? • How can we be sure we have the most general type?
Lambda Calculus Expressions e: • Identifiers: , , … •
Applications: e e’ • Abstractions: . e • Let bindings: let = e in e’
Lambda Calculus For example: . . . . let =
. . in
Types Monotypes : • Variables: • Primitives: • Functions: →
Type Schemes Type schemes : • Monomorphic: • Polymorphic: ∀
. Type schemes are types with identifiers bound by ∀ at the front.
Substitutions Mappings from variables to types • Can instantiate type
schemes using substitutions • Gives a simple subtyping relation on type schemes
Semantics Construct a semantic domain (CPO) V containing • Primitives
• Functions • An error element and a semantic function : e → (Id → V) → V
Semantics Identify types with subsets of V Define the judgment
A ╞ e : when (∀ ( : ’) ∈ A. ∈ ’) ⇒ e ∈
Declarative System Variable rule:
Declarative System Application rule:
Declarative System Abstraction rule:
Declarative System Let rule:
Declarative System Instantiation rule:
Declarative System Generalization rule:
Soundness If A e : then A ╞ e :
“Static behavior determines dynamic behavior”
Example Prove: . : ∀ . ( → → )
→ →
Algorithm W • The inference rules do not translate easily
into an algorithm (why not?) • Introduce w : Exp → Env → (Env, )
Algorithm W • W attempts to build a substitution, bottom-up
• W can fail with an error if there is no valid typing • Intuition: ◦ Collect constraints ◦ Then solve constraints • Reality: W is the fusion of these two steps • See the code!
Unification • Unification gives local information about types • We
assemble a global solution from local information
Unification Example: ( → ) ~ (( → ) →
) ~ ( → ) ~ ~ ( → )
Occurs Check Prevents inference of infinite types w( . ,
nil) = error! Can’t unify ~ if occurs in the body of . E.g. ~ → ~ ((… → ) → ) →
Soundness If w(A, e) = (S, ) then A e
: “Algorithm W constructs typing judgments”
Completeness If A e : then w(A, e) constructs a
typing judgment for e which generalises the above. “Algorithm W constructs principal types”
Further Reading More type systems • System F, F⍵ •
Rank-N types • Type Classes • Dependent Types • Refinement Types Other approaches • Constraints • Bidirectional typechecking • SMT See TAPL & ATAPL!
Acknowledgments DHM axioms reproduced from Wikipedia under the CC-3.0 Attribution/ShareAlike
license