Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Principal type-schemes for functional programs
Search
Phil Freeman
June 28, 2017
Programming
0
270
Principal type-schemes for functional programs
Phil Freeman
June 28, 2017
Tweet
Share
More Decks by Phil Freeman
See All by Phil Freeman
The Future Is Comonadic!
paf31
14
4.5k
Incremental Programming in PureScript
paf31
3
930
An Overview of the PureScript Type System
paf31
5
1.8k
Fun with Profunctors
paf31
3
1.1k
Intro to psc-package
paf31
0
120
Stack Safety for Free
paf31
0
260
Other Decks in Programming
See All in Programming
短期間での新規プロダクト開発における「コスパの良い」Goのテスト戦略」 / kamakura.go
n3xem
2
160
あれやってみてー駆動から成長を加速させる / areyattemite-driven
nashiusagi
1
200
Fibonacci Function Gallery - Part 1
philipschwarz
PRO
0
200
create_tableをしただけなのに〜囚われのuuid編〜
daisukeshinoku
0
240
[JAWS-UG横浜 #76] イケてるアップデートを宇宙いち早く紹介するよ!
maroon1st
0
450
MCP with Cloudflare Workers
yusukebe
2
220
LLM Supervised Fine-tuningの理論と実践
datanalyticslabo
3
860
nekko cloudにおけるProxmox VE利用事例
irumaru
3
420
CSC509 Lecture 14
javiergs
PRO
0
130
Jakarta EE meets AI
ivargrimstad
0
230
わたしの星のままで一番星になる ~ 出産を機にSIerからEC事業会社に転職した話 ~
kimura_m_29
0
180
CSC305 Lecture 25
javiergs
PRO
0
130
Featured
See All Featured
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
29
2k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
17
2.2k
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.1k
Build The Right Thing And Hit Your Dates
maggiecrowley
33
2.4k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
6.9k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
Git: the NoSQL Database
bkeepers
PRO
427
64k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Building Flexible Design Systems
yeseniaperezcruz
327
38k
Facilitating Awesome Meetings
lara
50
6.1k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.1k
The Art of Programming - Codeland 2020
erikaheidi
53
13k
Transcript
Principal type-schemes for functional programs Luis Damas and Robin Milner
(POPL `82)
Agenda • Slides • Code
ML • Meta Language for LCF • Type inference •
Influence on Haskell, Rust, F#, OCaml, ... • “Sweet spot” in type system design
ML letrec f xs = if null xs then nil
else snoc (f (tl xs)) (hd xs) What type does this function have? null : ∀ ( list → bool) snoc : ∀ ( list → → list) hd, tl : ∀ ( list → ) nil : ∀ ( list)
ML What about: let s x y z = x
z (y z) ?
Type Inference f : ∀ ( list → list) •
Given f, how can we infer this type? • What does it even mean for a value to have a type? • How can we be sure we have the most general type?
Lambda Calculus Expressions e: • Identifiers: , , … •
Applications: e e’ • Abstractions: . e • Let bindings: let = e in e’
Lambda Calculus For example: . . . . let =
. . in
Types Monotypes : • Variables: • Primitives: • Functions: →
Type Schemes Type schemes : • Monomorphic: • Polymorphic: ∀
. Type schemes are types with identifiers bound by ∀ at the front.
Substitutions Mappings from variables to types • Can instantiate type
schemes using substitutions • Gives a simple subtyping relation on type schemes
Semantics Construct a semantic domain (CPO) V containing • Primitives
• Functions • An error element and a semantic function : e → (Id → V) → V
Semantics Identify types with subsets of V Define the judgment
A ╞ e : when (∀ ( : ’) ∈ A. ∈ ’) ⇒ e ∈
Declarative System Variable rule:
Declarative System Application rule:
Declarative System Abstraction rule:
Declarative System Let rule:
Declarative System Instantiation rule:
Declarative System Generalization rule:
Soundness If A e : then A ╞ e :
“Static behavior determines dynamic behavior”
Example Prove: . : ∀ . ( → → )
→ →
Algorithm W • The inference rules do not translate easily
into an algorithm (why not?) • Introduce w : Exp → Env → (Env, )
Algorithm W • W attempts to build a substitution, bottom-up
• W can fail with an error if there is no valid typing • Intuition: ◦ Collect constraints ◦ Then solve constraints • Reality: W is the fusion of these two steps • See the code!
Unification • Unification gives local information about types • We
assemble a global solution from local information
Unification Example: ( → ) ~ (( → ) →
) ~ ( → ) ~ ~ ( → )
Occurs Check Prevents inference of infinite types w( . ,
nil) = error! Can’t unify ~ if occurs in the body of . E.g. ~ → ~ ((… → ) → ) →
Soundness If w(A, e) = (S, ) then A e
: “Algorithm W constructs typing judgments”
Completeness If A e : then w(A, e) constructs a
typing judgment for e which generalises the above. “Algorithm W constructs principal types”
Further Reading More type systems • System F, F⍵ •
Rank-N types • Type Classes • Dependent Types • Refinement Types Other approaches • Constraints • Bidirectional typechecking • SMT See TAPL & ATAPL!
Acknowledgments DHM axioms reproduced from Wikipedia under the CC-3.0 Attribution/ShareAlike
license