Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Principal type-schemes for functional programs
Search
Phil Freeman
June 28, 2017
Programming
0
330
Principal type-schemes for functional programs
Phil Freeman
June 28, 2017
Tweet
Share
More Decks by Phil Freeman
See All by Phil Freeman
The Future Is Comonadic!
paf31
14
4.6k
Incremental Programming in PureScript
paf31
3
980
An Overview of the PureScript Type System
paf31
5
1.9k
Fun with Profunctors
paf31
3
1.2k
Intro to psc-package
paf31
0
150
Stack Safety for Free
paf31
0
300
Other Decks in Programming
See All in Programming
Azure AI Foundryではじめてのマルチエージェントワークフロー
seosoft
0
170
初学者でも今すぐできる、Claude Codeの生産性を10倍上げるTips
s4yuba
16
11k
PicoRuby on Rails
makicamel
2
130
脱Riverpod?fqueryで考える、TanStack Queryライクなアーキテクチャの可能性
ostk0069
0
120
今ならAmazon ECSのサービス間通信をどう選ぶか / Selection of ECS Interservice Communication 2025
tkikuc
21
4k
GitHub Copilot and GitHub Codespaces Hands-on
ymd65536
2
150
Discover Metal 4
rei315
2
130
『自分のデータだけ見せたい!』を叶える──Laravel × Casbin で複雑権限をスッキリ解きほぐす 25 分
akitotsukahara
2
640
猫と暮らす Google Nest Cam生活🐈 / WebRTC with Google Nest Cam
yutailang0119
0
120
「テストは愚直&&網羅的に書くほどよい」という誤解 / Test Smarter, Not Harder
munetoshi
0
170
AIともっと楽するE2Eテスト
myohei
6
2.6k
システム成長を止めない!本番無停止テーブル移行の全貌
sakawe_ee
1
200
Featured
See All Featured
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Automating Front-end Workflow
addyosmani
1370
200k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
281
13k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.8k
Build The Right Thing And Hit Your Dates
maggiecrowley
36
2.8k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.3k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.3k
For a Future-Friendly Web
brad_frost
179
9.8k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.6k
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.9k
Practical Orchestrator
shlominoach
189
11k
Transcript
Principal type-schemes for functional programs Luis Damas and Robin Milner
(POPL `82)
Agenda • Slides • Code
ML • Meta Language for LCF • Type inference •
Influence on Haskell, Rust, F#, OCaml, ... • “Sweet spot” in type system design
ML letrec f xs = if null xs then nil
else snoc (f (tl xs)) (hd xs) What type does this function have? null : ∀ ( list → bool) snoc : ∀ ( list → → list) hd, tl : ∀ ( list → ) nil : ∀ ( list)
ML What about: let s x y z = x
z (y z) ?
Type Inference f : ∀ ( list → list) •
Given f, how can we infer this type? • What does it even mean for a value to have a type? • How can we be sure we have the most general type?
Lambda Calculus Expressions e: • Identifiers: , , … •
Applications: e e’ • Abstractions: . e • Let bindings: let = e in e’
Lambda Calculus For example: . . . . let =
. . in
Types Monotypes : • Variables: • Primitives: • Functions: →
Type Schemes Type schemes : • Monomorphic: • Polymorphic: ∀
. Type schemes are types with identifiers bound by ∀ at the front.
Substitutions Mappings from variables to types • Can instantiate type
schemes using substitutions • Gives a simple subtyping relation on type schemes
Semantics Construct a semantic domain (CPO) V containing • Primitives
• Functions • An error element and a semantic function : e → (Id → V) → V
Semantics Identify types with subsets of V Define the judgment
A ╞ e : when (∀ ( : ’) ∈ A. ∈ ’) ⇒ e ∈
Declarative System Variable rule:
Declarative System Application rule:
Declarative System Abstraction rule:
Declarative System Let rule:
Declarative System Instantiation rule:
Declarative System Generalization rule:
Soundness If A e : then A ╞ e :
“Static behavior determines dynamic behavior”
Example Prove: . : ∀ . ( → → )
→ →
Algorithm W • The inference rules do not translate easily
into an algorithm (why not?) • Introduce w : Exp → Env → (Env, )
Algorithm W • W attempts to build a substitution, bottom-up
• W can fail with an error if there is no valid typing • Intuition: ◦ Collect constraints ◦ Then solve constraints • Reality: W is the fusion of these two steps • See the code!
Unification • Unification gives local information about types • We
assemble a global solution from local information
Unification Example: ( → ) ~ (( → ) →
) ~ ( → ) ~ ~ ( → )
Occurs Check Prevents inference of infinite types w( . ,
nil) = error! Can’t unify ~ if occurs in the body of . E.g. ~ → ~ ((… → ) → ) →
Soundness If w(A, e) = (S, ) then A e
: “Algorithm W constructs typing judgments”
Completeness If A e : then w(A, e) constructs a
typing judgment for e which generalises the above. “Algorithm W constructs principal types”
Further Reading More type systems • System F, F⍵ •
Rank-N types • Type Classes • Dependent Types • Refinement Types Other approaches • Constraints • Bidirectional typechecking • SMT See TAPL & ATAPL!
Acknowledgments DHM axioms reproduced from Wikipedia under the CC-3.0 Attribution/ShareAlike
license