Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Principal type-schemes for functional programs
Search
Phil Freeman
June 28, 2017
Programming
0
340
Principal type-schemes for functional programs
Phil Freeman
June 28, 2017
Tweet
Share
More Decks by Phil Freeman
See All by Phil Freeman
The Future Is Comonadic!
paf31
14
4.7k
Incremental Programming in PureScript
paf31
3
1k
An Overview of the PureScript Type System
paf31
5
1.9k
Fun with Profunctors
paf31
3
1.2k
Intro to psc-package
paf31
0
150
Stack Safety for Free
paf31
0
310
Other Decks in Programming
See All in Programming
Reduxモダナイズ 〜コードのモダン化を通して、将来のライブラリ移行に備える〜
pvcresin
2
690
Advance Your Career with Open Source
ivargrimstad
0
370
CSC509 Lecture 06
javiergs
PRO
0
250
Чего вы не знали о строках в Python – Василий Рябов, PythoNN
sobolevn
0
160
株式会社 Sun terras カンパニーデック
sunterras
0
240
iOSエンジニア向けの英語学習アプリを作る!
yukawashouhei
0
180
ソフトウェア設計の実践的な考え方
masuda220
PRO
3
500
Le côté obscur des IA génératives
pascallemerrer
0
130
XP, Testing and ninja testing ZOZ5
m_seki
3
330
uniqueパッケージの内部実装を支えるweak pointerの話
magavel
0
930
大規模アプリのDIフレームワーク刷新戦略 ~過去最大規模の並行開発を止めずにアプリ全体に導入するまで~
mot_techtalk
0
390
そのpreloadは必要?見過ごされたpreloadが技術的負債として爆発した日
mugitti9
2
3.1k
Featured
See All Featured
Speed Design
sergeychernyshev
32
1.1k
The Pragmatic Product Professional
lauravandoore
36
6.9k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Docker and Python
trallard
46
3.6k
Faster Mobile Websites
deanohume
310
31k
Done Done
chrislema
185
16k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.1k
Practical Orchestrator
shlominoach
190
11k
[RailsConf 2023] Rails as a piece of cake
palkan
57
5.9k
Thoughts on Productivity
jonyablonski
70
4.9k
Optimizing for Happiness
mojombo
379
70k
The Straight Up "How To Draw Better" Workshop
denniskardys
237
140k
Transcript
Principal type-schemes for functional programs Luis Damas and Robin Milner
(POPL `82)
Agenda • Slides • Code
ML • Meta Language for LCF • Type inference •
Influence on Haskell, Rust, F#, OCaml, ... • “Sweet spot” in type system design
ML letrec f xs = if null xs then nil
else snoc (f (tl xs)) (hd xs) What type does this function have? null : ∀ ( list → bool) snoc : ∀ ( list → → list) hd, tl : ∀ ( list → ) nil : ∀ ( list)
ML What about: let s x y z = x
z (y z) ?
Type Inference f : ∀ ( list → list) •
Given f, how can we infer this type? • What does it even mean for a value to have a type? • How can we be sure we have the most general type?
Lambda Calculus Expressions e: • Identifiers: , , … •
Applications: e e’ • Abstractions: . e • Let bindings: let = e in e’
Lambda Calculus For example: . . . . let =
. . in
Types Monotypes : • Variables: • Primitives: • Functions: →
Type Schemes Type schemes : • Monomorphic: • Polymorphic: ∀
. Type schemes are types with identifiers bound by ∀ at the front.
Substitutions Mappings from variables to types • Can instantiate type
schemes using substitutions • Gives a simple subtyping relation on type schemes
Semantics Construct a semantic domain (CPO) V containing • Primitives
• Functions • An error element and a semantic function : e → (Id → V) → V
Semantics Identify types with subsets of V Define the judgment
A ╞ e : when (∀ ( : ’) ∈ A. ∈ ’) ⇒ e ∈
Declarative System Variable rule:
Declarative System Application rule:
Declarative System Abstraction rule:
Declarative System Let rule:
Declarative System Instantiation rule:
Declarative System Generalization rule:
Soundness If A e : then A ╞ e :
“Static behavior determines dynamic behavior”
Example Prove: . : ∀ . ( → → )
→ →
Algorithm W • The inference rules do not translate easily
into an algorithm (why not?) • Introduce w : Exp → Env → (Env, )
Algorithm W • W attempts to build a substitution, bottom-up
• W can fail with an error if there is no valid typing • Intuition: ◦ Collect constraints ◦ Then solve constraints • Reality: W is the fusion of these two steps • See the code!
Unification • Unification gives local information about types • We
assemble a global solution from local information
Unification Example: ( → ) ~ (( → ) →
) ~ ( → ) ~ ~ ( → )
Occurs Check Prevents inference of infinite types w( . ,
nil) = error! Can’t unify ~ if occurs in the body of . E.g. ~ → ~ ((… → ) → ) →
Soundness If w(A, e) = (S, ) then A e
: “Algorithm W constructs typing judgments”
Completeness If A e : then w(A, e) constructs a
typing judgment for e which generalises the above. “Algorithm W constructs principal types”
Further Reading More type systems • System F, F⍵ •
Rank-N types • Type Classes • Dependent Types • Refinement Types Other approaches • Constraints • Bidirectional typechecking • SMT See TAPL & ATAPL!
Acknowledgments DHM axioms reproduced from Wikipedia under the CC-3.0 Attribution/ShareAlike
license