Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Principal type-schemes for functional programs
Search
Phil Freeman
June 28, 2017
Programming
0
360
Principal type-schemes for functional programs
Phil Freeman
June 28, 2017
Tweet
Share
More Decks by Phil Freeman
See All by Phil Freeman
The Future Is Comonadic!
paf31
14
4.7k
Incremental Programming in PureScript
paf31
3
1k
An Overview of the PureScript Type System
paf31
5
2k
Fun with Profunctors
paf31
3
1.3k
Intro to psc-package
paf31
0
160
Stack Safety for Free
paf31
0
350
Other Decks in Programming
See All in Programming
非同期処理の迷宮を抜ける: 初学者がつまづく構造的な原因
pd1xx
1
700
ゲームの物理 剛体編
fadis
0
330
LLM Çağında Backend Olmak: 10 Milyon Prompt'u Milisaniyede Sorgulamak
selcukusta
0
120
tparseでgo testの出力を見やすくする
utgwkk
1
190
TUIライブラリつくってみた / i-just-make-TUI-library
kazto
1
370
リリース時」テストから「デイリー実行」へ!開発マネージャが取り組んだ、レガシー自動テストのモダン化戦略
goataka
0
120
WebRTC と Rust と8K 60fps
tnoho
2
1.9k
AtCoder Conference 2025「LLM時代のAHC」
imjk
2
340
TypeScriptで設計する 堅牢さとUXを両立した非同期ワークフローの実現
moeka__c
6
3k
AIエンジニアリングのご紹介 / Introduction to AI Engineering
rkaga
5
2k
dotfiles 式年遷宮 令和最新版
masawada
1
750
Why Kotlin? 電子カルテを Kotlin で開発する理由 / Why Kotlin? at Henry
agatan
2
7k
Featured
See All Featured
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
The Cost Of JavaScript in 2023
addyosmani
55
9.3k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.7k
Site-Speed That Sticks
csswizardry
13
990
Done Done
chrislema
186
16k
Making the Leap to Tech Lead
cromwellryan
135
9.7k
Agile that works and the tools we love
rasmusluckow
331
21k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
54k
Side Projects
sachag
455
43k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Automating Front-end Workflow
addyosmani
1371
200k
Transcript
Principal type-schemes for functional programs Luis Damas and Robin Milner
(POPL `82)
Agenda • Slides • Code
ML • Meta Language for LCF • Type inference •
Influence on Haskell, Rust, F#, OCaml, ... • “Sweet spot” in type system design
ML letrec f xs = if null xs then nil
else snoc (f (tl xs)) (hd xs) What type does this function have? null : ∀ ( list → bool) snoc : ∀ ( list → → list) hd, tl : ∀ ( list → ) nil : ∀ ( list)
ML What about: let s x y z = x
z (y z) ?
Type Inference f : ∀ ( list → list) •
Given f, how can we infer this type? • What does it even mean for a value to have a type? • How can we be sure we have the most general type?
Lambda Calculus Expressions e: • Identifiers: , , … •
Applications: e e’ • Abstractions: . e • Let bindings: let = e in e’
Lambda Calculus For example: . . . . let =
. . in
Types Monotypes : • Variables: • Primitives: • Functions: →
Type Schemes Type schemes : • Monomorphic: • Polymorphic: ∀
. Type schemes are types with identifiers bound by ∀ at the front.
Substitutions Mappings from variables to types • Can instantiate type
schemes using substitutions • Gives a simple subtyping relation on type schemes
Semantics Construct a semantic domain (CPO) V containing • Primitives
• Functions • An error element and a semantic function : e → (Id → V) → V
Semantics Identify types with subsets of V Define the judgment
A ╞ e : when (∀ ( : ’) ∈ A. ∈ ’) ⇒ e ∈
Declarative System Variable rule:
Declarative System Application rule:
Declarative System Abstraction rule:
Declarative System Let rule:
Declarative System Instantiation rule:
Declarative System Generalization rule:
Soundness If A e : then A ╞ e :
“Static behavior determines dynamic behavior”
Example Prove: . : ∀ . ( → → )
→ →
Algorithm W • The inference rules do not translate easily
into an algorithm (why not?) • Introduce w : Exp → Env → (Env, )
Algorithm W • W attempts to build a substitution, bottom-up
• W can fail with an error if there is no valid typing • Intuition: ◦ Collect constraints ◦ Then solve constraints • Reality: W is the fusion of these two steps • See the code!
Unification • Unification gives local information about types • We
assemble a global solution from local information
Unification Example: ( → ) ~ (( → ) →
) ~ ( → ) ~ ~ ( → )
Occurs Check Prevents inference of infinite types w( . ,
nil) = error! Can’t unify ~ if occurs in the body of . E.g. ~ → ~ ((… → ) → ) →
Soundness If w(A, e) = (S, ) then A e
: “Algorithm W constructs typing judgments”
Completeness If A e : then w(A, e) constructs a
typing judgment for e which generalises the above. “Algorithm W constructs principal types”
Further Reading More type systems • System F, F⍵ •
Rank-N types • Type Classes • Dependent Types • Refinement Types Other approaches • Constraints • Bidirectional typechecking • SMT See TAPL & ATAPL!
Acknowledgments DHM axioms reproduced from Wikipedia under the CC-3.0 Attribution/ShareAlike
license