Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Principal type-schemes for functional programs
Search
Phil Freeman
June 28, 2017
Programming
0
330
Principal type-schemes for functional programs
Phil Freeman
June 28, 2017
Tweet
Share
More Decks by Phil Freeman
See All by Phil Freeman
The Future Is Comonadic!
paf31
14
4.7k
Incremental Programming in PureScript
paf31
3
990
An Overview of the PureScript Type System
paf31
5
1.9k
Fun with Profunctors
paf31
3
1.2k
Intro to psc-package
paf31
0
150
Stack Safety for Free
paf31
0
310
Other Decks in Programming
See All in Programming
今だからこそ入門する Server-Sent Events (SSE)
nearme_tech
PRO
3
260
CJK and Unicode From a PHP Committer
youkidearitai
PRO
0
110
パッケージ設計の黒魔術/Kyoto.go#63
lufia
3
440
概念モデル→論理モデルで気をつけていること
sunnyone
3
300
知っているようで知らない"rails new"の世界 / The World of "rails new" You Think You Know but Don't
luccafort
PRO
1
190
Ruby×iOSアプリ開発 ~共に歩んだエコシステムの物語~
temoki
0
360
個人軟體時代
ethanhuang13
0
330
機能追加とリーダー業務の類似性
rinchoku
2
1.4k
Introducing ReActionView: A new ActionView-compatible ERB Engine @ Rails World 2025, Amsterdam
marcoroth
0
720
Testing Trophyは叫ばない
toms74209200
0
900
アセットのコンパイルについて
ojun9
0
130
アプリの "かわいい" を支えるアニメーションツールRiveについて
uetyo
0
280
Featured
See All Featured
Why Our Code Smells
bkeepers
PRO
339
57k
Six Lessons from altMBA
skipperchong
28
4k
For a Future-Friendly Web
brad_frost
180
9.9k
Intergalactic Javascript Robots from Outer Space
tanoku
272
27k
Reflections from 52 weeks, 52 projects
jeffersonlam
352
21k
4 Signs Your Business is Dying
shpigford
184
22k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
9
820
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
Code Reviewing Like a Champion
maltzj
525
40k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
GitHub's CSS Performance
jonrohan
1032
460k
Transcript
Principal type-schemes for functional programs Luis Damas and Robin Milner
(POPL `82)
Agenda • Slides • Code
ML • Meta Language for LCF • Type inference •
Influence on Haskell, Rust, F#, OCaml, ... • “Sweet spot” in type system design
ML letrec f xs = if null xs then nil
else snoc (f (tl xs)) (hd xs) What type does this function have? null : ∀ ( list → bool) snoc : ∀ ( list → → list) hd, tl : ∀ ( list → ) nil : ∀ ( list)
ML What about: let s x y z = x
z (y z) ?
Type Inference f : ∀ ( list → list) •
Given f, how can we infer this type? • What does it even mean for a value to have a type? • How can we be sure we have the most general type?
Lambda Calculus Expressions e: • Identifiers: , , … •
Applications: e e’ • Abstractions: . e • Let bindings: let = e in e’
Lambda Calculus For example: . . . . let =
. . in
Types Monotypes : • Variables: • Primitives: • Functions: →
Type Schemes Type schemes : • Monomorphic: • Polymorphic: ∀
. Type schemes are types with identifiers bound by ∀ at the front.
Substitutions Mappings from variables to types • Can instantiate type
schemes using substitutions • Gives a simple subtyping relation on type schemes
Semantics Construct a semantic domain (CPO) V containing • Primitives
• Functions • An error element and a semantic function : e → (Id → V) → V
Semantics Identify types with subsets of V Define the judgment
A ╞ e : when (∀ ( : ’) ∈ A. ∈ ’) ⇒ e ∈
Declarative System Variable rule:
Declarative System Application rule:
Declarative System Abstraction rule:
Declarative System Let rule:
Declarative System Instantiation rule:
Declarative System Generalization rule:
Soundness If A e : then A ╞ e :
“Static behavior determines dynamic behavior”
Example Prove: . : ∀ . ( → → )
→ →
Algorithm W • The inference rules do not translate easily
into an algorithm (why not?) • Introduce w : Exp → Env → (Env, )
Algorithm W • W attempts to build a substitution, bottom-up
• W can fail with an error if there is no valid typing • Intuition: ◦ Collect constraints ◦ Then solve constraints • Reality: W is the fusion of these two steps • See the code!
Unification • Unification gives local information about types • We
assemble a global solution from local information
Unification Example: ( → ) ~ (( → ) →
) ~ ( → ) ~ ~ ( → )
Occurs Check Prevents inference of infinite types w( . ,
nil) = error! Can’t unify ~ if occurs in the body of . E.g. ~ → ~ ((… → ) → ) →
Soundness If w(A, e) = (S, ) then A e
: “Algorithm W constructs typing judgments”
Completeness If A e : then w(A, e) constructs a
typing judgment for e which generalises the above. “Algorithm W constructs principal types”
Further Reading More type systems • System F, F⍵ •
Rank-N types • Type Classes • Dependent Types • Refinement Types Other approaches • Constraints • Bidirectional typechecking • SMT See TAPL & ATAPL!
Acknowledgments DHM axioms reproduced from Wikipedia under the CC-3.0 Attribution/ShareAlike
license