Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Principal type-schemes for functional programs
Search
Phil Freeman
June 28, 2017
Programming
0
320
Principal type-schemes for functional programs
Phil Freeman
June 28, 2017
Tweet
Share
More Decks by Phil Freeman
See All by Phil Freeman
The Future Is Comonadic!
paf31
14
4.6k
Incremental Programming in PureScript
paf31
3
970
An Overview of the PureScript Type System
paf31
5
1.9k
Fun with Profunctors
paf31
3
1.2k
Intro to psc-package
paf31
0
150
Stack Safety for Free
paf31
0
300
Other Decks in Programming
See All in Programming
[初登壇@jAZUG]アプリ開発者が気になるGoogleCloud/Azure+wasm/wasi
asaringo
0
130
プロダクト開発でも使おう 関数のオーバーロード
yoiwamoto
0
150
Cloudflare Realtime と Workers でつくるサーバーレス WebRTC
nekoya3
0
400
Blueskyのプラグインを作ってみた
hakkadaikon
1
550
Bytecode Manipulation 으로 생산성 높이기
bigstark
1
340
Using AI Tools Around Software Development
inouehi
0
1.2k
FormFlow - Build Stunning Multistep Forms
yceruto
1
170
単体テストの始め方/作り方
toms74209200
0
450
つよそうにふるまい、つよい成果を出すのなら、つよいのかもしれない
irof
1
290
Javaに鉄道指向プログラミング (Railway Oriented Pro gramming) のエッセンスを取り入れる/Bringing the Essence of Railway-Oriented Programming to Java
cocet33000
2
550
KotlinConf 2025 現地で感じたServer-Side Kotlin
n_takehata
1
210
Perlで痩せる
yuukis
1
680
Featured
See All Featured
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.7k
How to train your dragon (web standard)
notwaldorf
92
6.1k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Product Roadmaps are Hard
iamctodd
PRO
53
11k
Why Our Code Smells
bkeepers
PRO
337
57k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Why You Should Never Use an ORM
jnunemaker
PRO
56
9.4k
VelocityConf: Rendering Performance Case Studies
addyosmani
329
24k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.5k
Optimizing for Happiness
mojombo
379
70k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
45
7.3k
Transcript
Principal type-schemes for functional programs Luis Damas and Robin Milner
(POPL `82)
Agenda • Slides • Code
ML • Meta Language for LCF • Type inference •
Influence on Haskell, Rust, F#, OCaml, ... • “Sweet spot” in type system design
ML letrec f xs = if null xs then nil
else snoc (f (tl xs)) (hd xs) What type does this function have? null : ∀ ( list → bool) snoc : ∀ ( list → → list) hd, tl : ∀ ( list → ) nil : ∀ ( list)
ML What about: let s x y z = x
z (y z) ?
Type Inference f : ∀ ( list → list) •
Given f, how can we infer this type? • What does it even mean for a value to have a type? • How can we be sure we have the most general type?
Lambda Calculus Expressions e: • Identifiers: , , … •
Applications: e e’ • Abstractions: . e • Let bindings: let = e in e’
Lambda Calculus For example: . . . . let =
. . in
Types Monotypes : • Variables: • Primitives: • Functions: →
Type Schemes Type schemes : • Monomorphic: • Polymorphic: ∀
. Type schemes are types with identifiers bound by ∀ at the front.
Substitutions Mappings from variables to types • Can instantiate type
schemes using substitutions • Gives a simple subtyping relation on type schemes
Semantics Construct a semantic domain (CPO) V containing • Primitives
• Functions • An error element and a semantic function : e → (Id → V) → V
Semantics Identify types with subsets of V Define the judgment
A ╞ e : when (∀ ( : ’) ∈ A. ∈ ’) ⇒ e ∈
Declarative System Variable rule:
Declarative System Application rule:
Declarative System Abstraction rule:
Declarative System Let rule:
Declarative System Instantiation rule:
Declarative System Generalization rule:
Soundness If A e : then A ╞ e :
“Static behavior determines dynamic behavior”
Example Prove: . : ∀ . ( → → )
→ →
Algorithm W • The inference rules do not translate easily
into an algorithm (why not?) • Introduce w : Exp → Env → (Env, )
Algorithm W • W attempts to build a substitution, bottom-up
• W can fail with an error if there is no valid typing • Intuition: ◦ Collect constraints ◦ Then solve constraints • Reality: W is the fusion of these two steps • See the code!
Unification • Unification gives local information about types • We
assemble a global solution from local information
Unification Example: ( → ) ~ (( → ) →
) ~ ( → ) ~ ~ ( → )
Occurs Check Prevents inference of infinite types w( . ,
nil) = error! Can’t unify ~ if occurs in the body of . E.g. ~ → ~ ((… → ) → ) →
Soundness If w(A, e) = (S, ) then A e
: “Algorithm W constructs typing judgments”
Completeness If A e : then w(A, e) constructs a
typing judgment for e which generalises the above. “Algorithm W constructs principal types”
Further Reading More type systems • System F, F⍵ •
Rank-N types • Type Classes • Dependent Types • Refinement Types Other approaches • Constraints • Bidirectional typechecking • SMT See TAPL & ATAPL!
Acknowledgments DHM axioms reproduced from Wikipedia under the CC-3.0 Attribution/ShareAlike
license