Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Principal type-schemes for functional programs
Search
Phil Freeman
June 28, 2017
Programming
0
330
Principal type-schemes for functional programs
Phil Freeman
June 28, 2017
Tweet
Share
More Decks by Phil Freeman
See All by Phil Freeman
The Future Is Comonadic!
paf31
14
4.6k
Incremental Programming in PureScript
paf31
3
980
An Overview of the PureScript Type System
paf31
5
1.9k
Fun with Profunctors
paf31
3
1.2k
Intro to psc-package
paf31
0
150
Stack Safety for Free
paf31
0
300
Other Decks in Programming
See All in Programming
Modern Angular with Signals and Signal Store:New Rules for Your Architecture @enterJS Advanced Angular Day 2025
manfredsteyer
PRO
0
270
CDK引数設計道場100本ノック
badmintoncryer
2
480
Android 16KBページサイズ対応をはじめからていねいに
mine2424
0
440
AI時代のソフトウェア開発を考える(2025/07版) / Agentic Software Engineering Findy 2025-07 Edition
twada
PRO
99
37k
코딩 에이전트 체크리스트: Claude Code ver.
nacyot
0
930
ご注文の差分はこちらですか? 〜 AWS CDK のいろいろな差分検出と安全なデプロイ
konokenj
3
580
おやつのお供はお決まりですか?@WWDC25 Recap -Japan-\(region).swift
shingangan
0
140
「App Intent」よくわからんけどすごい!
rinngo0302
1
100
イベントストーミング図からコードへの変換手順 / Procedure for Converting Event Storming Diagrams to Code
nrslib
2
1.1k
PHPでWebSocketサーバーを実装しよう2025
kubotak
0
320
AI時代の『改訂新版 良いコード/悪いコードで学ぶ設計入門』 / ai-good-code-bad-code
minodriven
23
9.6k
ふつうの技術スタックでアート作品を作ってみる
akira888
1
1.3k
Featured
See All Featured
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.7k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
We Have a Design System, Now What?
morganepeng
53
7.7k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
Statistics for Hackers
jakevdp
799
220k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
Being A Developer After 40
akosma
90
590k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
126
53k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
Automating Front-end Workflow
addyosmani
1370
200k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.1k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
Transcript
Principal type-schemes for functional programs Luis Damas and Robin Milner
(POPL `82)
Agenda • Slides • Code
ML • Meta Language for LCF • Type inference •
Influence on Haskell, Rust, F#, OCaml, ... • “Sweet spot” in type system design
ML letrec f xs = if null xs then nil
else snoc (f (tl xs)) (hd xs) What type does this function have? null : ∀ ( list → bool) snoc : ∀ ( list → → list) hd, tl : ∀ ( list → ) nil : ∀ ( list)
ML What about: let s x y z = x
z (y z) ?
Type Inference f : ∀ ( list → list) •
Given f, how can we infer this type? • What does it even mean for a value to have a type? • How can we be sure we have the most general type?
Lambda Calculus Expressions e: • Identifiers: , , … •
Applications: e e’ • Abstractions: . e • Let bindings: let = e in e’
Lambda Calculus For example: . . . . let =
. . in
Types Monotypes : • Variables: • Primitives: • Functions: →
Type Schemes Type schemes : • Monomorphic: • Polymorphic: ∀
. Type schemes are types with identifiers bound by ∀ at the front.
Substitutions Mappings from variables to types • Can instantiate type
schemes using substitutions • Gives a simple subtyping relation on type schemes
Semantics Construct a semantic domain (CPO) V containing • Primitives
• Functions • An error element and a semantic function : e → (Id → V) → V
Semantics Identify types with subsets of V Define the judgment
A ╞ e : when (∀ ( : ’) ∈ A. ∈ ’) ⇒ e ∈
Declarative System Variable rule:
Declarative System Application rule:
Declarative System Abstraction rule:
Declarative System Let rule:
Declarative System Instantiation rule:
Declarative System Generalization rule:
Soundness If A e : then A ╞ e :
“Static behavior determines dynamic behavior”
Example Prove: . : ∀ . ( → → )
→ →
Algorithm W • The inference rules do not translate easily
into an algorithm (why not?) • Introduce w : Exp → Env → (Env, )
Algorithm W • W attempts to build a substitution, bottom-up
• W can fail with an error if there is no valid typing • Intuition: ◦ Collect constraints ◦ Then solve constraints • Reality: W is the fusion of these two steps • See the code!
Unification • Unification gives local information about types • We
assemble a global solution from local information
Unification Example: ( → ) ~ (( → ) →
) ~ ( → ) ~ ~ ( → )
Occurs Check Prevents inference of infinite types w( . ,
nil) = error! Can’t unify ~ if occurs in the body of . E.g. ~ → ~ ((… → ) → ) →
Soundness If w(A, e) = (S, ) then A e
: “Algorithm W constructs typing judgments”
Completeness If A e : then w(A, e) constructs a
typing judgment for e which generalises the above. “Algorithm W constructs principal types”
Further Reading More type systems • System F, F⍵ •
Rank-N types • Type Classes • Dependent Types • Refinement Types Other approaches • Constraints • Bidirectional typechecking • SMT See TAPL & ATAPL!
Acknowledgments DHM axioms reproduced from Wikipedia under the CC-3.0 Attribution/ShareAlike
license