Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Principal type-schemes for functional programs
Search
Phil Freeman
June 28, 2017
Programming
0
350
Principal type-schemes for functional programs
Phil Freeman
June 28, 2017
Tweet
Share
More Decks by Phil Freeman
See All by Phil Freeman
The Future Is Comonadic!
paf31
14
4.7k
Incremental Programming in PureScript
paf31
3
1k
An Overview of the PureScript Type System
paf31
5
1.9k
Fun with Profunctors
paf31
3
1.3k
Intro to psc-package
paf31
0
150
Stack Safety for Free
paf31
0
330
Other Decks in Programming
See All in Programming
マンガアプリViewerの大画面対応を考える
kk__777
0
430
Amazon Verified Permissions実践入門 〜Cedar活用とAppSync導入事例/Practical Introduction to Amazon Verified Permissions
fossamagna
2
110
AI時代に必須!状況言語化スキル / ai-context-verbalization
minodriven
2
250
NixOS + Kubernetesで構築する自宅サーバーのすべて
ichi_h3
0
1.3k
kiroとCodexで最高のSpec駆動開発を!!数時間で web3ネイティブなミニゲームを作ってみたよ!
mashharuki
0
1k
SwiftDataを使って10万件のデータを読み書きする
akidon0000
0
250
퇴근 후 1억이 거래되는 서비스 만들기 | 내가 AI를 사용하는 방법
maryang
1
160
ネストしたdata classの面倒な更新にさようなら!Lensを作って理解するArrowのOpticsの世界
shiita0903
1
180
Introducing RemoteCompose: break your UI out of the app sandbox.
camaelon
2
240
NIKKEI Tech Talk#38
cipepser
0
340
テーブル定義書の構造化抽出して、生成AIでDWH分析を試してみた / devio2025tokyo
kasacchiful
0
340
Temporal Knowledge Graphで作る! 時間変化するナレッジを扱うAI Agentの世界
po3rin
5
1.1k
Featured
See All Featured
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Visualization
eitanlees
150
16k
Designing for humans not robots
tammielis
254
26k
Code Review Best Practice
trishagee
72
19k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.1k
Raft: Consensus for Rubyists
vanstee
140
7.2k
Docker and Python
trallard
46
3.6k
Git: the NoSQL Database
bkeepers
PRO
431
66k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.7k
Transcript
Principal type-schemes for functional programs Luis Damas and Robin Milner
(POPL `82)
Agenda • Slides • Code
ML • Meta Language for LCF • Type inference •
Influence on Haskell, Rust, F#, OCaml, ... • “Sweet spot” in type system design
ML letrec f xs = if null xs then nil
else snoc (f (tl xs)) (hd xs) What type does this function have? null : ∀ ( list → bool) snoc : ∀ ( list → → list) hd, tl : ∀ ( list → ) nil : ∀ ( list)
ML What about: let s x y z = x
z (y z) ?
Type Inference f : ∀ ( list → list) •
Given f, how can we infer this type? • What does it even mean for a value to have a type? • How can we be sure we have the most general type?
Lambda Calculus Expressions e: • Identifiers: , , … •
Applications: e e’ • Abstractions: . e • Let bindings: let = e in e’
Lambda Calculus For example: . . . . let =
. . in
Types Monotypes : • Variables: • Primitives: • Functions: →
Type Schemes Type schemes : • Monomorphic: • Polymorphic: ∀
. Type schemes are types with identifiers bound by ∀ at the front.
Substitutions Mappings from variables to types • Can instantiate type
schemes using substitutions • Gives a simple subtyping relation on type schemes
Semantics Construct a semantic domain (CPO) V containing • Primitives
• Functions • An error element and a semantic function : e → (Id → V) → V
Semantics Identify types with subsets of V Define the judgment
A ╞ e : when (∀ ( : ’) ∈ A. ∈ ’) ⇒ e ∈
Declarative System Variable rule:
Declarative System Application rule:
Declarative System Abstraction rule:
Declarative System Let rule:
Declarative System Instantiation rule:
Declarative System Generalization rule:
Soundness If A e : then A ╞ e :
“Static behavior determines dynamic behavior”
Example Prove: . : ∀ . ( → → )
→ →
Algorithm W • The inference rules do not translate easily
into an algorithm (why not?) • Introduce w : Exp → Env → (Env, )
Algorithm W • W attempts to build a substitution, bottom-up
• W can fail with an error if there is no valid typing • Intuition: ◦ Collect constraints ◦ Then solve constraints • Reality: W is the fusion of these two steps • See the code!
Unification • Unification gives local information about types • We
assemble a global solution from local information
Unification Example: ( → ) ~ (( → ) →
) ~ ( → ) ~ ~ ( → )
Occurs Check Prevents inference of infinite types w( . ,
nil) = error! Can’t unify ~ if occurs in the body of . E.g. ~ → ~ ((… → ) → ) →
Soundness If w(A, e) = (S, ) then A e
: “Algorithm W constructs typing judgments”
Completeness If A e : then w(A, e) constructs a
typing judgment for e which generalises the above. “Algorithm W constructs principal types”
Further Reading More type systems • System F, F⍵ •
Rank-N types • Type Classes • Dependent Types • Refinement Types Other approaches • Constraints • Bidirectional typechecking • SMT See TAPL & ATAPL!
Acknowledgments DHM axioms reproduced from Wikipedia under the CC-3.0 Attribution/ShareAlike
license