Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Principal type-schemes for functional programs
Search
Phil Freeman
June 28, 2017
Programming
0
360
Principal type-schemes for functional programs
Phil Freeman
June 28, 2017
Tweet
Share
More Decks by Phil Freeman
See All by Phil Freeman
The Future Is Comonadic!
paf31
14
4.8k
Incremental Programming in PureScript
paf31
3
1k
An Overview of the PureScript Type System
paf31
5
2k
Fun with Profunctors
paf31
3
1.3k
Intro to psc-package
paf31
0
160
Stack Safety for Free
paf31
0
350
Other Decks in Programming
See All in Programming
안드로이드 9년차 개발자, 프론트엔드 주니어로 커리어 리셋하기
maryang
1
130
Deno Tunnel を使ってみた話
kamekyame
0
220
Findy AI+の開発、運用におけるMCP活用事例
starfish719
0
1.7k
認証・認可の基本を学ぼう前編
kouyuume
0
260
AI Agent Tool のためのバックエンドアーキテクチャを考える #encraft
izumin5210
1
480
Navigation 3: 적응형 UI를 위한 앱 탐색
fornewid
1
440
生成AI時代を勝ち抜くエンジニア組織マネジメント
coconala_engineer
0
350
GISエンジニアから見たLINKSデータ
nokonoko1203
0
180
Tinkerbellから学ぶ、Podで DHCPをリッスンする手法
tomokon
0
140
Context is King? 〜Verifiability時代とコンテキスト設計 / Beyond "Context is King"
rkaga
10
1.4k
開発に寄りそう自動テストの実現
goyoki
2
1.4k
モデル駆動設計をやってみようワークショップ開催報告(Modeling Forum2025) / model driven design workshop report
haru860
0
280
Featured
See All Featured
Paper Plane (Part 1)
katiecoart
PRO
0
1.9k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3k
The Curse of the Amulet
leimatthew05
0
4.6k
Crafting Experiences
bethany
0
21
Leveraging Curiosity to Care for An Aging Population
cassininazir
1
130
How to Grow Your eCommerce with AI & Automation
katarinadahlin
PRO
0
70
A Modern Web Designer's Workflow
chriscoyier
698
190k
Tell your own story through comics
letsgokoyo
0
750
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.3k
What does AI have to do with Human Rights?
axbom
PRO
0
1.9k
Automating Front-end Workflow
addyosmani
1371
200k
Transcript
Principal type-schemes for functional programs Luis Damas and Robin Milner
(POPL `82)
Agenda • Slides • Code
ML • Meta Language for LCF • Type inference •
Influence on Haskell, Rust, F#, OCaml, ... • “Sweet spot” in type system design
ML letrec f xs = if null xs then nil
else snoc (f (tl xs)) (hd xs) What type does this function have? null : ∀ ( list → bool) snoc : ∀ ( list → → list) hd, tl : ∀ ( list → ) nil : ∀ ( list)
ML What about: let s x y z = x
z (y z) ?
Type Inference f : ∀ ( list → list) •
Given f, how can we infer this type? • What does it even mean for a value to have a type? • How can we be sure we have the most general type?
Lambda Calculus Expressions e: • Identifiers: , , … •
Applications: e e’ • Abstractions: . e • Let bindings: let = e in e’
Lambda Calculus For example: . . . . let =
. . in
Types Monotypes : • Variables: • Primitives: • Functions: →
Type Schemes Type schemes : • Monomorphic: • Polymorphic: ∀
. Type schemes are types with identifiers bound by ∀ at the front.
Substitutions Mappings from variables to types • Can instantiate type
schemes using substitutions • Gives a simple subtyping relation on type schemes
Semantics Construct a semantic domain (CPO) V containing • Primitives
• Functions • An error element and a semantic function : e → (Id → V) → V
Semantics Identify types with subsets of V Define the judgment
A ╞ e : when (∀ ( : ’) ∈ A. ∈ ’) ⇒ e ∈
Declarative System Variable rule:
Declarative System Application rule:
Declarative System Abstraction rule:
Declarative System Let rule:
Declarative System Instantiation rule:
Declarative System Generalization rule:
Soundness If A e : then A ╞ e :
“Static behavior determines dynamic behavior”
Example Prove: . : ∀ . ( → → )
→ →
Algorithm W • The inference rules do not translate easily
into an algorithm (why not?) • Introduce w : Exp → Env → (Env, )
Algorithm W • W attempts to build a substitution, bottom-up
• W can fail with an error if there is no valid typing • Intuition: ◦ Collect constraints ◦ Then solve constraints • Reality: W is the fusion of these two steps • See the code!
Unification • Unification gives local information about types • We
assemble a global solution from local information
Unification Example: ( → ) ~ (( → ) →
) ~ ( → ) ~ ~ ( → )
Occurs Check Prevents inference of infinite types w( . ,
nil) = error! Can’t unify ~ if occurs in the body of . E.g. ~ → ~ ((… → ) → ) →
Soundness If w(A, e) = (S, ) then A e
: “Algorithm W constructs typing judgments”
Completeness If A e : then w(A, e) constructs a
typing judgment for e which generalises the above. “Algorithm W constructs principal types”
Further Reading More type systems • System F, F⍵ •
Rank-N types • Type Classes • Dependent Types • Refinement Types Other approaches • Constraints • Bidirectional typechecking • SMT See TAPL & ATAPL!
Acknowledgments DHM axioms reproduced from Wikipedia under the CC-3.0 Attribution/ShareAlike
license