Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
自己関手の圏における モノイド対象 in Scala
Search
Kazuhiro Ichikawa
March 19, 2022
Programming
0
570
自己関手の圏における モノイド対象 in Scala
Kazuhiro Ichikawa
March 19, 2022
Tweet
Share
More Decks by Kazuhiro Ichikawa
See All by Kazuhiro Ichikawa
Tuples and Mirrors in Scala3 and Higher-Kinded Data
phenan
0
1.6k
ValiantParsing
phenan
1
110
Intro to typeclass in Scala
phenan
10
2.5k
Scalalr
phenan
1
2.4k
Other Decks in Programming
See All in Programming
Back to the Future: Let me tell you about the ACP protocol
terhechte
0
130
詳しくない分野でのVibe Codingで困ったことと学び/vibe-coding-in-unfamiliar-area
shibayu36
3
4.3k
PostgreSQLで手軽にDuckDBを使う!DuckDB&pg_duckdb入門/osk2025-duckdb
takahashiikki
1
240
CSC305 Lecture 04
javiergs
PRO
0
250
育てるアーキテクチャ:戦い抜くPythonマイクロサービスの設計と進化戦略
fujidomoe
1
150
Catch Up: Go Style Guide Update
andpad
0
170
2025年版 サーバーレス Web アプリケーションの作り方
hayatow
23
25k
止められない医療アプリ、そっと Swift 6 へ
medley
1
120
Local Peer-to-Peer APIはどのように使われていくのか?
hal_spidernight
2
450
GitHub Actions × AWS OIDC連携の仕組みと経緯を理解する
ota1022
0
240
プログラマのための作曲入門
cheebow
0
540
明日から始めるリファクタリング
ryounasso
0
110
Featured
See All Featured
Why Our Code Smells
bkeepers
PRO
339
57k
How GitHub (no longer) Works
holman
315
140k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.6k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Code Review Best Practice
trishagee
72
19k
YesSQL, Process and Tooling at Scale
rocio
173
14k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
32
2.2k
Automating Front-end Workflow
addyosmani
1371
200k
A Tale of Four Properties
chriscoyier
160
23k
Rails Girls Zürich Keynote
gr2m
95
14k
Scaling GitHub
holman
463
140k
Transcript
⾃⼰関⼿の圏における モノイド対象 in Scala @phenan
おことわり ´ 圏論的に厳密な話はしません ´ 雰囲気だけ分かった気持ちになるところが⽬標
モナドは単なる⾃⼰関⼿の圏における モノイド対象だよ。何か問題でも︖ Philip Lee Wadler
有名な煽り⽂句 ´ モナドを勉強しようとした⼈の意思を粉砕する ´ 雰囲気だけでも理解しておきたい︕
分解: ⾃⼰関⼿の圏におけるモノイド対象 ´ 圏 ´ 関⼿ ´ ⾃⼰関⼿ ´ ⾃⼰関⼿の圏
´ モノイド対象
圏 (category) ´ 数学的対象とそれらの間の関係(射)の集まり ´ 射は合成可能 ´ 抽象的すぎていまいちピンとこない
型を対象とし、関数の型の関係を考える ´ 右図だと Byte, Int, String が対象 ´ Byte =>
Int, Int => String, Byte => String が射 ´ 射の合成可能性 = 関数の合成可能性 Int String Byte
全部 Option 型にしてみる ´ これも圏 ´ 対象: Option[Byte], Option[Int], Option[String]
´ 射: Option[Byte] => Option[Int], (略) Option[Int] Option[String] Option[Byte]
⾼階型 F[_] の表現する圏 ´ 対象: 任意の型 T に対する F[T] ´
射: 任意の型 T1, T2 に対して F[T1] => F[T2] ´ だいたいこいつを考えておけばOK
Hask圏 ´ 対象: 任意の型 ´ 射: 任意の型 T1, T2 に対して
T1 => T2 ´ ⾼階型 F[_] の表現する圏の F が Id のバージョンとも考えられる
関⼿ ´ 圏から圏への対応付け ´ 射の合成を保存する
具体例 ´ Option をつけたものに対応させる Int String Byte Option[Int] Option[String] Option[Byte]
我々はこれを知っている ´ Int => String が Option[Int] => Option[String] に対応する
´ Option.map: (A => B) => Option[A] => Option[B] Int String Byte Option[Int] Option[String] Option[Byte]
Cats, Scalaz の Functor ´ 射 A => B を
射 F[A] => F[B] に対応させる ´ Hask圏から⾼階型F[_]の表現する圏への関⼿ trait Functor[F[_]] { def map[A, B](f: A => B): F[A] => F[B] }
⾃⼰関⼿ ´ 関⼿のうち、圏をその圏⾃⾝の⼀部分に対応させるもの ´ フラクタル的なイメージ︖
Cats, Scalaz の Functor は⾃⼰関⼿ ´ 射 F[A] => F[B]
は⾃明にHask圏の射でもある trait Functor[F[_]] { def map[A, B](f: A => B): F[A] => F[B] }
関⼿の圏 ´ 関⼿は圏を別の圏に移す ´ 関⼿同⼠も合成可能 ´ 関⼿を射とみなして圏を作れる B C A
関⼿ F: A => B 関⼿G∘F: A => C 関⼿G: B => C
具体例 ´ Option と Future の合成 ´ Option.map: (A =>
B) => Option[A] => Option[B] ´ Future.map: (A => B) => Future[A] => Future[B] Id Option.map Future.map Future[Option[_]] Option[_]
⾃⼰関⼿の圏 ´ ⾃⼰関⼿同⼠は合成しても⾃⼰関⼿ ´ ⾃⼰関⼿同⼠を合成する演算 ⊗ を考えると、結果も⾃⼰関⼿になる ´ モノイドっぽい︕==> モノイド圏と呼ばれる
´ モノイドの要件として単位元が必要
具体例 ´ G[_] ⊗ F[_] -> G[F[_]] になる ´ 単位元:
Id Id Option.map Future.map Future[Option[_]] def compose[A, B](f: A => B): G[F[A]] => G[F[B]] = { Functor[G].map(Functor[F].map(f)) } Option[_]
モノイド対象 ´ モノイド圏の対象Mのうち以下の条件を満たすもの ´ M ⊗ M が M に戻る
´ 単位元 を I として I => M の射が存在する ´ イメージとしては、それ⾃⾝がモノイドであるような対象 ´ ⊗ がそれ⾃⾝の⼆項演算になる ´ それ⾃⾝の単位元をモノイド圏全体の単位元から導ける
OptionはFunctorの圏のモノイド対象 ´ Option[_] ⊗ Option[_] = Option[Option[_]] ´ flatten すれば
Option[_] に戻せる︕ ´ 単位元 Id から Option への射: T => Option[T] ´ これは Some(_) のこと
Functorの圏のモノイド対象 ´ flatten: F[F[A]] => F[A] と unit: A =>
F[A] があれば良い ´ つまりこうなる trait Monad[F[_]] extends Functor[F[_]] { def flatten[A](f: F[F[A]]): F[A] def unit[A](f: A): F[A] }