Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
自己関手の圏における モノイド対象 in Scala
Search
Kazuhiro Ichikawa
March 19, 2022
Programming
0
460
自己関手の圏における モノイド対象 in Scala
Kazuhiro Ichikawa
March 19, 2022
Tweet
Share
More Decks by Kazuhiro Ichikawa
See All by Kazuhiro Ichikawa
Tuples and Mirrors in Scala3 and Higher-Kinded Data
phenan
0
1.5k
ValiantParsing
phenan
1
85
Intro to typeclass in Scala
phenan
10
2.4k
Scalalr
phenan
1
2.2k
Other Decks in Programming
See All in Programming
Alba: Why, How and What's So Interesting
okuramasafumi
0
200
快速入門可觀測性
blueswen
0
500
CQRS+ES の力を使って効果を感じる / Feel the effects of using the power of CQRS+ES
seike460
PRO
0
240
Simple組み合わせ村から大都会Railsにやってきた俺は / Coming to Rails from the Simple
moznion
3
2.1k
watsonx.ai Dojo #6 継続的なAIアプリ開発と展開
oniak3ibm
PRO
0
160
どうして手を動かすよりもチーム内のコードレビューを優先するべきなのか
okashoi
3
870
20241217 競争力強化とビジネス価値創出への挑戦:モノタロウのシステムモダナイズ、開発組織の進化と今後の展望
monotaro
PRO
0
280
Jaspr Dart Web Framework 박제창 @Devfest 2024
itsmedreamwalker
0
150
QA環境で誰でも自由自在に現在時刻を操って検証できるようにした話
kalibora
1
140
オニオンアーキテクチャを使って、 Unityと.NETでコードを共有する
soi013
0
370
GitHub CopilotでTypeScriptの コード生成するワザップ
starfish719
26
5.9k
非ブラウザランタイムとWeb標準 / Non-Browser Runtimes and Web Standards
petamoriken
0
430
Featured
See All Featured
Scaling GitHub
holman
459
140k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
49
2.2k
GraphQLの誤解/rethinking-graphql
sonatard
68
10k
Designing Experiences People Love
moore
139
23k
We Have a Design System, Now What?
morganepeng
51
7.3k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
19
2.3k
Java REST API Framework Comparison - PWX 2021
mraible
28
8.3k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
38
1.9k
Fantastic passwords and where to find them - at NoRuKo
philnash
50
2.9k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
192
16k
Raft: Consensus for Rubyists
vanstee
137
6.7k
YesSQL, Process and Tooling at Scale
rocio
170
14k
Transcript
⾃⼰関⼿の圏における モノイド対象 in Scala @phenan
おことわり ´ 圏論的に厳密な話はしません ´ 雰囲気だけ分かった気持ちになるところが⽬標
モナドは単なる⾃⼰関⼿の圏における モノイド対象だよ。何か問題でも︖ Philip Lee Wadler
有名な煽り⽂句 ´ モナドを勉強しようとした⼈の意思を粉砕する ´ 雰囲気だけでも理解しておきたい︕
分解: ⾃⼰関⼿の圏におけるモノイド対象 ´ 圏 ´ 関⼿ ´ ⾃⼰関⼿ ´ ⾃⼰関⼿の圏
´ モノイド対象
圏 (category) ´ 数学的対象とそれらの間の関係(射)の集まり ´ 射は合成可能 ´ 抽象的すぎていまいちピンとこない
型を対象とし、関数の型の関係を考える ´ 右図だと Byte, Int, String が対象 ´ Byte =>
Int, Int => String, Byte => String が射 ´ 射の合成可能性 = 関数の合成可能性 Int String Byte
全部 Option 型にしてみる ´ これも圏 ´ 対象: Option[Byte], Option[Int], Option[String]
´ 射: Option[Byte] => Option[Int], (略) Option[Int] Option[String] Option[Byte]
⾼階型 F[_] の表現する圏 ´ 対象: 任意の型 T に対する F[T] ´
射: 任意の型 T1, T2 に対して F[T1] => F[T2] ´ だいたいこいつを考えておけばOK
Hask圏 ´ 対象: 任意の型 ´ 射: 任意の型 T1, T2 に対して
T1 => T2 ´ ⾼階型 F[_] の表現する圏の F が Id のバージョンとも考えられる
関⼿ ´ 圏から圏への対応付け ´ 射の合成を保存する
具体例 ´ Option をつけたものに対応させる Int String Byte Option[Int] Option[String] Option[Byte]
我々はこれを知っている ´ Int => String が Option[Int] => Option[String] に対応する
´ Option.map: (A => B) => Option[A] => Option[B] Int String Byte Option[Int] Option[String] Option[Byte]
Cats, Scalaz の Functor ´ 射 A => B を
射 F[A] => F[B] に対応させる ´ Hask圏から⾼階型F[_]の表現する圏への関⼿ trait Functor[F[_]] { def map[A, B](f: A => B): F[A] => F[B] }
⾃⼰関⼿ ´ 関⼿のうち、圏をその圏⾃⾝の⼀部分に対応させるもの ´ フラクタル的なイメージ︖
Cats, Scalaz の Functor は⾃⼰関⼿ ´ 射 F[A] => F[B]
は⾃明にHask圏の射でもある trait Functor[F[_]] { def map[A, B](f: A => B): F[A] => F[B] }
関⼿の圏 ´ 関⼿は圏を別の圏に移す ´ 関⼿同⼠も合成可能 ´ 関⼿を射とみなして圏を作れる B C A
関⼿ F: A => B 関⼿G∘F: A => C 関⼿G: B => C
具体例 ´ Option と Future の合成 ´ Option.map: (A =>
B) => Option[A] => Option[B] ´ Future.map: (A => B) => Future[A] => Future[B] Id Option.map Future.map Future[Option[_]] Option[_]
⾃⼰関⼿の圏 ´ ⾃⼰関⼿同⼠は合成しても⾃⼰関⼿ ´ ⾃⼰関⼿同⼠を合成する演算 ⊗ を考えると、結果も⾃⼰関⼿になる ´ モノイドっぽい︕==> モノイド圏と呼ばれる
´ モノイドの要件として単位元が必要
具体例 ´ G[_] ⊗ F[_] -> G[F[_]] になる ´ 単位元:
Id Id Option.map Future.map Future[Option[_]] def compose[A, B](f: A => B): G[F[A]] => G[F[B]] = { Functor[G].map(Functor[F].map(f)) } Option[_]
モノイド対象 ´ モノイド圏の対象Mのうち以下の条件を満たすもの ´ M ⊗ M が M に戻る
´ 単位元 を I として I => M の射が存在する ´ イメージとしては、それ⾃⾝がモノイドであるような対象 ´ ⊗ がそれ⾃⾝の⼆項演算になる ´ それ⾃⾝の単位元をモノイド圏全体の単位元から導ける
OptionはFunctorの圏のモノイド対象 ´ Option[_] ⊗ Option[_] = Option[Option[_]] ´ flatten すれば
Option[_] に戻せる︕ ´ 単位元 Id から Option への射: T => Option[T] ´ これは Some(_) のこと
Functorの圏のモノイド対象 ´ flatten: F[F[A]] => F[A] と unit: A =>
F[A] があれば良い ´ つまりこうなる trait Monad[F[_]] extends Functor[F[_]] { def flatten[A](f: F[F[A]]): F[A] def unit[A](f: A): F[A] }