Dreams, Drugs and ConvNets

Dreams, Drugs and ConvNets

Artefacts of human and artificial cognition.
at Studenckie Koło Naukowe Neurobiologii, the University of Warsaw

1b324e4900e79878eb518c1263b41795?s=128

Piotr Migdał

March 02, 2017
Tweet

Transcript

  1. 1.

    Dreams, Drugs & ConvNets Piotr Migdał, PhD deepsense.io / freelancer

    http://p.migdal.pl/ 2 Mar 2017, Studenckie Koło Naukowe Neurobiologii UW
  2. 2.
  3. 3.
  4. 4.

    Deep Learning progress • image recognition, neural style, word analogies,

    per-char translations, playing ATARI games, Go, [no idea what’s next] • fast-paced (more than my quantum physics PhD):
 6 month ago a breakthrough, now a baseline • (no questions about Singularity please!)
  5. 5.

    Artificial neural networks • Multidimensional arrays • Simple matrix operations

    (add, multiply) • Floats (not spikes) • Simple activation functions (sigmoid, ReLU) • Cost function and back-propagation • A lot of weights (e.g. 100M)
  6. 9.

    Big questions • creating general AI or sentient beings •

    transferring our minds (mind uploading) “I mean, if we're able to save even just a small piece of ourselves, why wouldn't we do that?” - SOMA https://www.youtube.com/watch?v=BZTfi1jv-EE
  7. 10.

    Flesh vs machines:
 practical questions • Cross-inspiration: • Machine Learning

    to Human Cognition • Human Cognition to Machine Learning • Common abstractions • Learning in general • Hierarchical signal processing
  8. 13.

    The biggest lie of every
 parent, pet owner
 and neural

    network trainer: “I’ve never shown it that, it must have learned it by itself!”
  9. 18.

    • What should I use:
 THC, LSD, DMT? • A

    good GPU! http://alexgrey.com/shop/st-al.html
  10. 30.

    Learning what is important • Object consistency • Toddler needs

    to learn, so do ConvNets http://blogs.scientificamerican.com/illusion-chasers/what-little-babies-see-that-you-no-longer-can/
  11. 36.

    Questions? • If you want to learn: • http://lumiverse.io/series/neural-networks-demystified •

    https://gist.github.com/stared/7de2908b9bcba01c39ee3c591875a23c • http://www.deeplearningbook.org/ • Keras (on top of TensorFlow) in Jupyter Notebook • https://medium.com/@mateuszsieniawski/keras-with-gpu-on-amazon-ec2-a-step-by- step-instruction-4f90364e49ac#.4i1norivh • https://www.erowid.org/ http://p.migdal.pl/ + I do like emails: pmigdal@gmail.com