Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Qubism: self-similar visualization of a many-bo...
Search
Piotr Migdał
January 10, 2013
Science
1
320
Qubism: self-similar visualization of a many-body wavefunction
Article, code and more:
http://qubism.wikidot.com/
Piotr Migdał
January 10, 2013
Tweet
Share
More Decks by Piotr Migdał
See All by Piotr Migdał
Detecting trypophobia triggers (with deep learning)
pmigdal
1
240
Teaching Machine Learning
pmigdal
7
1.5k
A game needs to framework
pmigdal
1
170
Visualizing word coincidences
pmigdal
1
70
Dreams, Drugs and ConvNets
pmigdal
1
860
{Machine, Deep} Learning for software engineers
pmigdal
1
2.1k
Lightning talk - Teaching machine learning
pmigdal
0
1.7k
Interaktywna wizualizacja danych w d3.js
pmigdal
2
640
Gry naukowe, moja gra kwantowa
pmigdal
0
220
Other Decks in Science
See All in Science
マテリアルズ・インフォマティクスの先端で起きていること / What's Happening at the Cutting Edge of Materials Informatics
snhryt
1
190
非同期コミュニケーションの構造 -チャットツールを用いた組織における情報の流れの設計について-
koisono
0
210
サイゼミ用因果推論
lw
1
3.6k
多次元展開法を用いた 多値バイクラスタリング モデルの提案
kosugitti
0
240
Improving Search @scale with efficient query experimentation @BerlinBuzzwords 2024
searchhub
0
270
Planted Clique Conjectures are Equivalent
nobushimi
0
120
白金鉱業Meetup Vol.16_【初学者向け発表】 数理最適化のはじめの一歩 〜身近な問題で学ぶ最適化の面白さ〜
brainpadpr
10
2k
FOGBoston2024
lcolladotor
0
150
06_浅井雄一郎_株式会社浅井農園代表取締役社長_紹介資料.pdf
sip3ristex
0
180
3次元点群を利用した植物の葉の自動セグメンテーションについて
kentaitakura
2
920
小杉考司(専修大学)
kosugitti
2
620
構造設計のための3D生成AI-最新の取り組みと今後の展開-
kojinishiguchi
0
900
Featured
See All Featured
Building an army of robots
kneath
303
45k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
4
380
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.2k
Testing 201, or: Great Expectations
jmmastey
42
7.2k
How to Think Like a Performance Engineer
csswizardry
22
1.4k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.2k
How to train your dragon (web standard)
notwaldorf
91
5.9k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
46
2.4k
The Language of Interfaces
destraynor
156
24k
Done Done
chrislema
182
16k
Building a Scalable Design System with Sketch
lauravandoore
461
33k
Transcript
self-similar visualization of many-body wavefunctions QUBISM: presented by: Piotr Migdał
(ICFO, Barcelona)
Don’t take plots for granted!
None
None
bar chart - William Playfair (1786) scatter plot - Francis
Galton (a century later)
Dmitri Mendeleev | Periodic Table of Elements (1869) periodic table
- Dimitri Mendeleev (1869)
Back to the quantum world
↵|"i + |#i
↵|"i + |#i ⇠ = ↵| i + |•i
↵|"i + |#i ⇠ = ↵| i + |•i ⇠
= ↵|0i + |1i
↵|"i + |#i ⇠ = ↵| i + |•i ⇠
= ↵|0i + |1i ↵00 |00i + ↵01 |01i + ↵10 |10i + ↵11 |11i
↵|"i + |#i ⇠ = ↵| i + |•i ⇠
= ↵|0i + |1i ↵00 |00i + ↵01 |01i + ↵10 |10i + ↵11 |11i ↵000 |000i + ↵001 |001i + ↵010 |010i + ↵011 |011i + ↵100 |100i + ↵101 |101i + ↵110 |110i + ↵111 |111i
↵|"i + |#i ⇠ = ↵| i + |•i ⇠
= ↵|0i + |1i 2n complex parameters ↵00 |00i + ↵01 |01i + ↵10 |10i + ↵11 |11i ↵000 |000i + ↵001 |001i + ↵010 |010i + ↵011 |011i + ↵100 |100i + ↵101 |101i + ↵110 |110i + ↵111 |111i
None
None
00 01 10 11
00 01 10 11 00 01 00 01 10 11
10 11 00 01 00 01 10 11 10 11
00 01 10 11 00 01 10 11 00 01
10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11
00 01 10 11 00 01 10 11 00 01
10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 |101000i
00 01 10 11 00 01 10 11 00 01
10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 |101000i
00 01 10 11 00 01 10 11 00 01
10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 |101000i
00 01 10 11 00 01 10 11 00 01
10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 |101000i
00 01 10 11 00 01 10 11 00 01
10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 |101000i
00 01 10 11 00 01 10 11 00 01
10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 FM: 000000... FM: 111111...
00 01 10 11 00 01 10 11 00 01
10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 FM: 000000... FM: 111111... AFM: 010101... AFM: 101010...
Examples
Dicke state |01i + |10i p 2
Dicke state |01i + |10i p 2 00 10 01
11
Dicke state (|0011i + |0101i +|0110i + |1001i +|1010i +
|1100i) / p 6
Dicke state particles zeros ones 6 3 3
Dicke state particles zeros ones 8 4 4
Dicke state particles zeros ones 10 5 5
Dicke state particles zeros ones 12 6 6
Dicke state particles zeros ones 14 7 7
Product state (↵|0i + |1i)n
Heisenberg AFM X ~ Si · ~ Si+1 (periodic boundary
cond.)
Heisenberg AFM (1,2) (3,4) (5,6) (7,8) ... X ~ Si
· ~ Si+1 (periodic boundary cond.)
Heisenberg AFM (1,2) (3,4) (5,6) (7,8) ... (n,1) (2,3) (4,5)
(6,7) ... X ~ Si · ~ Si+1 (periodic boundary cond.)
Heisenberg AFM (1,2) (3,4) (5,6) (7,8) ... (n,1) (2,3) (4,5)
(6,7) ... X ~ Si · ~ Si+1 (open boundary cond.)
It works for any qudit 1D spin chains
-- -0 -+ 0- 00 0+ +- +0 ++ +
qutrits (spin-1) 0 -
AKLT state Affleck, Lieb, Kennedy and Tasaki (| +i +
|00i + | + i)/ p 3 + 1 3 ⇣ ~ Si · ~ Si+1 ⌘2 X ~ Si · ~ Si+1
AKLT state particles 4 Affleck, Lieb, Kennedy and Tasaki +
1 3 ⇣ ~ Si · ~ Si+1 ⌘2 X ~ Si · ~ Si+1
AKLT state Affleck, Lieb, Kennedy and Tasaki + 1 3
⇣ ~ Si · ~ Si+1 ⌘2 X ~ Si · ~ Si+1 particles 6
AKLT state Affleck, Lieb, Kennedy and Tasaki + 1 3
⇣ ~ Si · ~ Si+1 ⌘2 X ~ Si · ~ Si+1 particles 8
AKLT state Affleck, Lieb, Kennedy and Tasaki + 1 3
⇣ ~ Si · ~ Si+1 ⌘2 X ~ Si · ~ Si+1 particles 10
Alternative qubistic schemes
00 01 11 10 anti-ferromagnetic ferromagnetic
Heisenberg AFM X ~ Si · ~ Si+1
X z i z i+1 X x i Ising transverse
field
X z i z i+1 X x i Ising transverse
field = 1
X z i z i+1 X x i Ising transverse
field
X z i z i+1 X x i Ising transverse
field = 1
None
Product state
Product state Dicke half-filled
Product state Dicke half-filled Ising transverse field (ground state)
Product state Dicke half-filled Ising transverse field (ground state) Heisenberg
(ground state)
You can see entanglement
entanglement: (1,2) vs (3,4,5,6,7,8,9,...)
entanglement: (1,2) vs (3,4,5,6,7,8,9,...) Schmidt rank: A A A A
1 (not entangled)
entanglement: (1,2) vs (3,4,5,6,7,8,9,...) Schmidt rank: A A A A
1 (not entangled) A B B C 3 (entangled!)
entanglement: (1,2,3,4) vs (5,6,7,8,9,...) Schmidt rank:
entanglement: (1,2,3,4) vs (5,6,7,8,9,...) Schmidt rank: A A A A
A A A A A A A A A A A A 1 (not entangled)
entanglement: (1,2,3,4) vs (5,6,7,8,9,...) Schmidt rank: A A A A
A A A A A A A A A A A A 1 (not entangled) A
A B B B B entanglement: (1,2,3,4) vs (5,6,7,8,9,...) Schmidt
rank: A A A A A A A A A A A A A A A A 1 (not entangled) A
A B B B B entanglement: (1,2,3,4) vs (5,6,7,8,9,...) Schmidt
rank: A A A A A A A A A A A A A A A A 1 (not entangled) A B B C B C C B C C C A
A B B B B entanglement: (1,2,3,4) vs (5,6,7,8,9,...) Schmidt
rank: A A A A A A A A A A A A A A A A 1 (not entangled) A B B C B C C D B C C D C D D A B B C B C C B C C C A
A B B B B entanglement: (1,2,3,4) vs (5,6,7,8,9,...) Schmidt
rank: A A A A A A A A A A A A A A A A 1 (not entangled) A B B C B C C D B C C D C D D A B B C B C C B C C C A 5 (entangled!) A B B C B C C D B C C D C D D E
{|0i, |1i}⌦4 {|+i, | i}⌦4 ⌦4 x ⌦4 z Schmidt
number: 1 2 2 3 4 |0000i |GHZi |Wi Dicke half-filling
Renyi fractal dimension (and box counting)
AKLT ground state also works for qutrits (e.g. spin-1) log(4)
log(3) ⇡ 1 . 26 and its fractal dimension
0 0.5 1 1.5 2 0 0.2 0.4 0.6 0.8
1 1.2 1.4 1.6 dq arctan(K) q=0 q=0.5 q=1 q=2 q =104 X ( i ) z ( i +1) z ( i ) x Ising transverse field surface-like line-like point-like
0 0.5 1 1.5 2 0 0.2 0.4 0.6 0.8
1 1.2 1.4 1.6 dq arctan(K) q=0 q=0.5 q=1 q=2 q =104 X ( i ) z ( i +1) z ( i ) x Ising transverse field = 1 surface-like line-like point-like
And how about going the other way?
Jose I. Latorre, arXiv:quant-ph/0510031 (2005) QPEG! matrix product states for
image compression JPEG?
Javier Rodriguez-Laguna Piotr Migdał Miguel Ibanez Berganza Maciej Lewenstein German
Sierra
http://qubism.wikidot.com/ Thanks! paper, code, etc: J.Rodriguez-Laguna, P. Migdał, M. Ibánez
Berganza, M. Lewenstein and G. Sierra. Qubism: self-similar visualization of many-body wavefunctions. New J. Phys. 14, 053028 (2012), arXiv:1112.3560.
None