Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Qubism: self-similar visualization of a many-bo...
Search
Piotr Migdał
January 10, 2013
Science
1
380
Qubism: self-similar visualization of a many-body wavefunction
Article, code and more:
http://qubism.wikidot.com/
Piotr Migdał
January 10, 2013
Tweet
Share
More Decks by Piotr Migdał
See All by Piotr Migdał
Detecting trypophobia triggers (with deep learning)
pmigdal
1
290
Teaching Machine Learning
pmigdal
7
1.6k
A game needs to framework
pmigdal
1
200
Visualizing word coincidences
pmigdal
1
75
Dreams, Drugs and ConvNets
pmigdal
1
900
{Machine, Deep} Learning for software engineers
pmigdal
1
2.1k
Lightning talk - Teaching machine learning
pmigdal
0
1.7k
Interaktywna wizualizacja danych w d3.js
pmigdal
2
690
Gry naukowe, moja gra kwantowa
pmigdal
0
230
Other Decks in Science
See All in Science
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
990
AIによる科学の加速: 各領域での革新と共創の未来
masayamoriofficial
0
110
SciPyDataJapan 2025
schwalbe10
0
260
Cross-Media Technologies, Information Science and Human-Information Interaction
signer
PRO
3
31k
データベース14: B+木 & ハッシュ索引
trycycle
PRO
0
440
オンプレミス環境にKubernetesを構築する
koukimiura
0
340
データベース15: ビッグデータ時代のデータベース
trycycle
PRO
0
350
データベース02: データベースの概念
trycycle
PRO
2
900
Transport information Geometry: Current and Future II
lwc2017
0
190
ウェブ・ソーシャルメディア論文読み会 第25回: Differences in misinformation sharing can lead to politically asymmetric sanctions (Nature, 2024)
hkefka385
0
130
データベース10: 拡張実体関連モデル
trycycle
PRO
0
980
「美は世界を救う」を心理学で実証したい~クラファンを通じた新しい研究方法
jimpe_hitsuwari
1
160
Featured
See All Featured
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.2k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
31
2.2k
Done Done
chrislema
185
16k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
8
520
Agile that works and the tools we love
rasmusluckow
330
21k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.4k
Writing Fast Ruby
sferik
628
62k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
6k
The Cost Of JavaScript in 2023
addyosmani
53
8.9k
Transcript
self-similar visualization of many-body wavefunctions QUBISM: presented by: Piotr Migdał
(ICFO, Barcelona)
Don’t take plots for granted!
None
None
bar chart - William Playfair (1786) scatter plot - Francis
Galton (a century later)
Dmitri Mendeleev | Periodic Table of Elements (1869) periodic table
- Dimitri Mendeleev (1869)
Back to the quantum world
↵|"i + |#i
↵|"i + |#i ⇠ = ↵| i + |•i
↵|"i + |#i ⇠ = ↵| i + |•i ⇠
= ↵|0i + |1i
↵|"i + |#i ⇠ = ↵| i + |•i ⇠
= ↵|0i + |1i ↵00 |00i + ↵01 |01i + ↵10 |10i + ↵11 |11i
↵|"i + |#i ⇠ = ↵| i + |•i ⇠
= ↵|0i + |1i ↵00 |00i + ↵01 |01i + ↵10 |10i + ↵11 |11i ↵000 |000i + ↵001 |001i + ↵010 |010i + ↵011 |011i + ↵100 |100i + ↵101 |101i + ↵110 |110i + ↵111 |111i
↵|"i + |#i ⇠ = ↵| i + |•i ⇠
= ↵|0i + |1i 2n complex parameters ↵00 |00i + ↵01 |01i + ↵10 |10i + ↵11 |11i ↵000 |000i + ↵001 |001i + ↵010 |010i + ↵011 |011i + ↵100 |100i + ↵101 |101i + ↵110 |110i + ↵111 |111i
None
None
00 01 10 11
00 01 10 11 00 01 00 01 10 11
10 11 00 01 00 01 10 11 10 11
00 01 10 11 00 01 10 11 00 01
10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11
00 01 10 11 00 01 10 11 00 01
10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 |101000i
00 01 10 11 00 01 10 11 00 01
10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 |101000i
00 01 10 11 00 01 10 11 00 01
10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 |101000i
00 01 10 11 00 01 10 11 00 01
10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 |101000i
00 01 10 11 00 01 10 11 00 01
10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 |101000i
00 01 10 11 00 01 10 11 00 01
10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 FM: 000000... FM: 111111...
00 01 10 11 00 01 10 11 00 01
10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00 01 00 01 10 11 10 11 00 01 00 01 10 11 10 11 FM: 000000... FM: 111111... AFM: 010101... AFM: 101010...
Examples
Dicke state |01i + |10i p 2
Dicke state |01i + |10i p 2 00 10 01
11
Dicke state (|0011i + |0101i +|0110i + |1001i +|1010i +
|1100i) / p 6
Dicke state particles zeros ones 6 3 3
Dicke state particles zeros ones 8 4 4
Dicke state particles zeros ones 10 5 5
Dicke state particles zeros ones 12 6 6
Dicke state particles zeros ones 14 7 7
Product state (↵|0i + |1i)n
Heisenberg AFM X ~ Si · ~ Si+1 (periodic boundary
cond.)
Heisenberg AFM (1,2) (3,4) (5,6) (7,8) ... X ~ Si
· ~ Si+1 (periodic boundary cond.)
Heisenberg AFM (1,2) (3,4) (5,6) (7,8) ... (n,1) (2,3) (4,5)
(6,7) ... X ~ Si · ~ Si+1 (periodic boundary cond.)
Heisenberg AFM (1,2) (3,4) (5,6) (7,8) ... (n,1) (2,3) (4,5)
(6,7) ... X ~ Si · ~ Si+1 (open boundary cond.)
It works for any qudit 1D spin chains
-- -0 -+ 0- 00 0+ +- +0 ++ +
qutrits (spin-1) 0 -
AKLT state Affleck, Lieb, Kennedy and Tasaki (| +i +
|00i + | + i)/ p 3 + 1 3 ⇣ ~ Si · ~ Si+1 ⌘2 X ~ Si · ~ Si+1
AKLT state particles 4 Affleck, Lieb, Kennedy and Tasaki +
1 3 ⇣ ~ Si · ~ Si+1 ⌘2 X ~ Si · ~ Si+1
AKLT state Affleck, Lieb, Kennedy and Tasaki + 1 3
⇣ ~ Si · ~ Si+1 ⌘2 X ~ Si · ~ Si+1 particles 6
AKLT state Affleck, Lieb, Kennedy and Tasaki + 1 3
⇣ ~ Si · ~ Si+1 ⌘2 X ~ Si · ~ Si+1 particles 8
AKLT state Affleck, Lieb, Kennedy and Tasaki + 1 3
⇣ ~ Si · ~ Si+1 ⌘2 X ~ Si · ~ Si+1 particles 10
Alternative qubistic schemes
00 01 11 10 anti-ferromagnetic ferromagnetic
Heisenberg AFM X ~ Si · ~ Si+1
X z i z i+1 X x i Ising transverse
field
X z i z i+1 X x i Ising transverse
field = 1
X z i z i+1 X x i Ising transverse
field
X z i z i+1 X x i Ising transverse
field = 1
None
Product state
Product state Dicke half-filled
Product state Dicke half-filled Ising transverse field (ground state)
Product state Dicke half-filled Ising transverse field (ground state) Heisenberg
(ground state)
You can see entanglement
entanglement: (1,2) vs (3,4,5,6,7,8,9,...)
entanglement: (1,2) vs (3,4,5,6,7,8,9,...) Schmidt rank: A A A A
1 (not entangled)
entanglement: (1,2) vs (3,4,5,6,7,8,9,...) Schmidt rank: A A A A
1 (not entangled) A B B C 3 (entangled!)
entanglement: (1,2,3,4) vs (5,6,7,8,9,...) Schmidt rank:
entanglement: (1,2,3,4) vs (5,6,7,8,9,...) Schmidt rank: A A A A
A A A A A A A A A A A A 1 (not entangled)
entanglement: (1,2,3,4) vs (5,6,7,8,9,...) Schmidt rank: A A A A
A A A A A A A A A A A A 1 (not entangled) A
A B B B B entanglement: (1,2,3,4) vs (5,6,7,8,9,...) Schmidt
rank: A A A A A A A A A A A A A A A A 1 (not entangled) A
A B B B B entanglement: (1,2,3,4) vs (5,6,7,8,9,...) Schmidt
rank: A A A A A A A A A A A A A A A A 1 (not entangled) A B B C B C C B C C C A
A B B B B entanglement: (1,2,3,4) vs (5,6,7,8,9,...) Schmidt
rank: A A A A A A A A A A A A A A A A 1 (not entangled) A B B C B C C D B C C D C D D A B B C B C C B C C C A
A B B B B entanglement: (1,2,3,4) vs (5,6,7,8,9,...) Schmidt
rank: A A A A A A A A A A A A A A A A 1 (not entangled) A B B C B C C D B C C D C D D A B B C B C C B C C C A 5 (entangled!) A B B C B C C D B C C D C D D E
{|0i, |1i}⌦4 {|+i, | i}⌦4 ⌦4 x ⌦4 z Schmidt
number: 1 2 2 3 4 |0000i |GHZi |Wi Dicke half-filling
Renyi fractal dimension (and box counting)
AKLT ground state also works for qutrits (e.g. spin-1) log(4)
log(3) ⇡ 1 . 26 and its fractal dimension
0 0.5 1 1.5 2 0 0.2 0.4 0.6 0.8
1 1.2 1.4 1.6 dq arctan(K) q=0 q=0.5 q=1 q=2 q =104 X ( i ) z ( i +1) z ( i ) x Ising transverse field surface-like line-like point-like
0 0.5 1 1.5 2 0 0.2 0.4 0.6 0.8
1 1.2 1.4 1.6 dq arctan(K) q=0 q=0.5 q=1 q=2 q =104 X ( i ) z ( i +1) z ( i ) x Ising transverse field = 1 surface-like line-like point-like
And how about going the other way?
Jose I. Latorre, arXiv:quant-ph/0510031 (2005) QPEG! matrix product states for
image compression JPEG?
Javier Rodriguez-Laguna Piotr Migdał Miguel Ibanez Berganza Maciej Lewenstein German
Sierra
http://qubism.wikidot.com/ Thanks! paper, code, etc: J.Rodriguez-Laguna, P. Migdał, M. Ibánez
Berganza, M. Lewenstein and G. Sierra. Qubism: self-similar visualization of many-body wavefunctions. New J. Phys. 14, 053028 (2012), arXiv:1112.3560.
None