Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Attacks on Machine Learning
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
prabhant
October 27, 2017
Programming
0
580
Attacks on Machine Learning
Presentation for my talk on attacks on machine learning at PyconUK 2017
prabhant
October 27, 2017
Tweet
Share
More Decks by prabhant
See All by prabhant
Masters Thesis
prabhant
0
48
Class Imbalance Problem
prabhant
0
200
Gotchas of Pandas
prabhant
0
120
Other Decks in Programming
See All in Programming
Honoを使ったリモートMCPサーバでAIツールとの連携を加速させる!
tosuri13
1
170
QAフローを最適化し、品質水準を満たしながらリリースまでの期間を最短化する #RSGT2026
shibayu36
2
4.1k
ThorVG Viewer In VS Code
nors
0
760
AgentCoreとHuman in the Loop
har1101
5
210
CSC307 Lecture 04
javiergs
PRO
0
650
The Art of Re-Architecture - Droidcon India 2025
siddroid
0
170
AI Agent の開発と運用を支える Durable Execution #AgentsInProd
izumin5210
7
2.2k
プロダクトオーナーから見たSOC2 _SOC2ゆるミートアップ#2
kekekenta
0
160
公共交通オープンデータ × モバイルUX 複雑な運行情報を 『直感』に変換する技術
tinykitten
PRO
0
200
CSC307 Lecture 03
javiergs
PRO
1
490
【卒業研究】会話ログ分析によるユーザーごとの関心に応じた話題提案手法
momok47
0
180
HTTPプロトコル正しく理解していますか? 〜かわいい猫と共に学ぼう。ฅ^•ω•^ฅ ニャ〜
hekuchan
2
670
Featured
See All Featured
New Earth Scene 8
popppiees
1
1.5k
DevOps and Value Stream Thinking: Enabling flow, efficiency and business value
helenjbeal
1
88
Ruling the World: When Life Gets Gamed
codingconduct
0
130
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Impact Scores and Hybrid Strategies: The future of link building
tamaranovitovic
0
190
The World Runs on Bad Software
bkeepers
PRO
72
12k
Building Applications with DynamoDB
mza
96
6.9k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.3k
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
51
Typedesign – Prime Four
hannesfritz
42
2.9k
First, design no harm
axbom
PRO
2
1.1k
Transcript
None
About me • Security + Data science • Master’s student
at University of Tartu, Estonia
• What’s adversarial ML
• What’s adversarial ML • Goals of adversarial examples
• What’s adversarial ML • Goals of adversarial examples •
Algorithms to craft adversarial examples
• What’s adversarial ML • Goals of adversarial examples •
Algorithms to craft adversarial examples • Defense against adversarial examples(BONUS)
What’s Machine learning?
What’s Adversarial ML
What’s Adversarial ML =Security + ML
History Lesson!!
Where it started: • PRALab Unica
Where it started: • PRALab Unica Now: • Everyone First
paper: https://arxiv.org/pdf/1312.6199.pdf
Source: https://pralab.diee.unica.it/en/wild-patterns
Types of attacks • Whitebox • Blackbox
Ways to Attacks
Ways to Attacks Poisoning training data (train time attack)
Ways to Attacks Poisoning training data (Train time attack) Crafting
adversarial examples (Test time attack)
Adversarial examples goals • Confidence reduction: reduce the output confidence
classification
Adversarial examples goals • Confidence reduction • Misclassification: Changing the
output class
Adversarial examples goals • Confidence reduction • Misclassification • Targeted
misclassification: produce inputs that produce the output of a specific class
Adversarial examples goals • Confidence reduction • Misclassification • Targeted
misclassification • Source target misclassification: specific input gives specific output
How does Attacking ML models work?
How adversarial Examples work Source: cleverhans.io
Deep Neural Networks are Easily Fooled: High Confidence Predictions for
Unrecognizable Images :https://arxiv.org/pdf/1412.1897.pdf
Source: Adversarial Examples for Evaluating Reading Comprehension Systems Source: https://arxiv.org/pdf/1707.07328.pdf
Algorithms to craft adversarial examples for NN 1. FGSM: fast
gradient sign method
Algorithms to craft adversarial examples for NN 1. FGSM: fast
gradient sign method 2. JSMA: jacobian based saliency map attack
Algorithms to craft adversarial examples for NN 1. FGSM: fast
gradient sign method 2. JSMA: jacobian based saliency map attack 3. Carlini wagner attack
Algorithms to craft adversarial examples for NN 1. FGSM: fast
gradient sign method 2. JSMA: jacobian based saliency map attack 3. Carlini wagner attack 4. DeepFool
Algorithms to craft adversarial examples for NN 1. FGSM: fast
gradient sign method 2. JSMA: jacobian based saliency map attack 3. Carlini wagner attack 4. DeepFool 5. The Basic Iterative Method
Algorithms to craft adversarial examples for NN 1. FGSM: fast
gradient sign method 2. JSMA: jacobian based saliency map attack 3. Carlini wagner attack 4. DeepFool 5. The Basic Iterative Method 6. EAD: Elastic-Net Attacks
Algorithms to craft adversarial examples for NN 1. FGSM: fast
gradient sign method 2. JSMA: jacobian based saliency map attack 3. Carlini wagner attack 4. DeepFool 5. The Basic Iterative Method 6. EAD: Elastic-Net Attacks 7. Projected Gradient Descent Attack PS: these are only the famous one’s
BlackBox : How can it even be possible :( ?
Transferability The Space of Transferable Adversarial Examples: https://arxiv.org/pdf/1704.03453.pdf
Why should I Care?
Why should I Care?
Why should I Care?
Why should I Care?
None
But they aren’t that easy to make.. Are they :(
None
Then How to defend the Models against adversarial examples •
Adversarial Training ◦ Ensemble adversarial training • Defensive distillation
None
Libraries and resources • Cleverhans(Tensorflow) • FoolBox(bethgelab) • Secure ML
Library(not released) • Tools from PRA Lab • My blog
Thank You Q/A time <Don’t ask “WHY” because nobody knows>
Twitter: @prabhantsingh Linkedin: https://www.linkedin.com/in/prabhantsingh Github: @prabhant