Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Attacks on Machine Learning
Search
prabhant
October 27, 2017
Programming
0
570
Attacks on Machine Learning
Presentation for my talk on attacks on machine learning at PyconUK 2017
prabhant
October 27, 2017
Tweet
Share
More Decks by prabhant
See All by prabhant
Masters Thesis
prabhant
0
48
Class Imbalance Problem
prabhant
0
190
Gotchas of Pandas
prabhant
0
120
Other Decks in Programming
See All in Programming
組織もソフトウェアも難しく考えない、もっとシンプルな考え方で設計する #phpconfuk
o0h
PRO
10
3.5k
マイベストのシンプルなデータ基盤の話 - Googleスイートとのつき合い方 / mybest-simple-data-architecture-google-nized
snhryt
0
140
iOSでSVG画像を扱う
kishikawakatsumi
0
190
Inside of Swift Export
giginet
PRO
1
520
Register is more than clipboard
satorunooshie
1
430
What's New in Web AI?
christianliebel
PRO
0
120
ドメイン駆動設計のエッセンス
masuda220
PRO
15
7.6k
CSC305 Lecture 15
javiergs
PRO
0
180
Webサーバーサイド言語としてのRustについて
kouyuume
1
5.1k
AsyncSequenceとAsyncStreamのプロポーザルを全部読む!!
s_shimotori
1
260
チームのテスト力を総合的に鍛えてシフトレフトを推進する/Shifting Left with Software Testing Improvements
goyoki
4
2.2k
AI 駆動開発におけるコミュニティと AWS CDK の価値
konokenj
5
360
Featured
See All Featured
Typedesign – Prime Four
hannesfritz
42
2.9k
How GitHub (no longer) Works
holman
315
140k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.7k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Leading Effective Engineering Teams in the AI Era
addyosmani
8
1k
Embracing the Ebb and Flow
colly
88
4.9k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Producing Creativity
orderedlist
PRO
348
40k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Transcript
None
About me • Security + Data science • Master’s student
at University of Tartu, Estonia
• What’s adversarial ML
• What’s adversarial ML • Goals of adversarial examples
• What’s adversarial ML • Goals of adversarial examples •
Algorithms to craft adversarial examples
• What’s adversarial ML • Goals of adversarial examples •
Algorithms to craft adversarial examples • Defense against adversarial examples(BONUS)
What’s Machine learning?
What’s Adversarial ML
What’s Adversarial ML =Security + ML
History Lesson!!
Where it started: • PRALab Unica
Where it started: • PRALab Unica Now: • Everyone First
paper: https://arxiv.org/pdf/1312.6199.pdf
Source: https://pralab.diee.unica.it/en/wild-patterns
Types of attacks • Whitebox • Blackbox
Ways to Attacks
Ways to Attacks Poisoning training data (train time attack)
Ways to Attacks Poisoning training data (Train time attack) Crafting
adversarial examples (Test time attack)
Adversarial examples goals • Confidence reduction: reduce the output confidence
classification
Adversarial examples goals • Confidence reduction • Misclassification: Changing the
output class
Adversarial examples goals • Confidence reduction • Misclassification • Targeted
misclassification: produce inputs that produce the output of a specific class
Adversarial examples goals • Confidence reduction • Misclassification • Targeted
misclassification • Source target misclassification: specific input gives specific output
How does Attacking ML models work?
How adversarial Examples work Source: cleverhans.io
Deep Neural Networks are Easily Fooled: High Confidence Predictions for
Unrecognizable Images :https://arxiv.org/pdf/1412.1897.pdf
Source: Adversarial Examples for Evaluating Reading Comprehension Systems Source: https://arxiv.org/pdf/1707.07328.pdf
Algorithms to craft adversarial examples for NN 1. FGSM: fast
gradient sign method
Algorithms to craft adversarial examples for NN 1. FGSM: fast
gradient sign method 2. JSMA: jacobian based saliency map attack
Algorithms to craft adversarial examples for NN 1. FGSM: fast
gradient sign method 2. JSMA: jacobian based saliency map attack 3. Carlini wagner attack
Algorithms to craft adversarial examples for NN 1. FGSM: fast
gradient sign method 2. JSMA: jacobian based saliency map attack 3. Carlini wagner attack 4. DeepFool
Algorithms to craft adversarial examples for NN 1. FGSM: fast
gradient sign method 2. JSMA: jacobian based saliency map attack 3. Carlini wagner attack 4. DeepFool 5. The Basic Iterative Method
Algorithms to craft adversarial examples for NN 1. FGSM: fast
gradient sign method 2. JSMA: jacobian based saliency map attack 3. Carlini wagner attack 4. DeepFool 5. The Basic Iterative Method 6. EAD: Elastic-Net Attacks
Algorithms to craft adversarial examples for NN 1. FGSM: fast
gradient sign method 2. JSMA: jacobian based saliency map attack 3. Carlini wagner attack 4. DeepFool 5. The Basic Iterative Method 6. EAD: Elastic-Net Attacks 7. Projected Gradient Descent Attack PS: these are only the famous one’s
BlackBox : How can it even be possible :( ?
Transferability The Space of Transferable Adversarial Examples: https://arxiv.org/pdf/1704.03453.pdf
Why should I Care?
Why should I Care?
Why should I Care?
Why should I Care?
None
But they aren’t that easy to make.. Are they :(
None
Then How to defend the Models against adversarial examples •
Adversarial Training ◦ Ensemble adversarial training • Defensive distillation
None
Libraries and resources • Cleverhans(Tensorflow) • FoolBox(bethgelab) • Secure ML
Library(not released) • Tools from PRA Lab • My blog
Thank You Q/A time <Don’t ask “WHY” because nobody knows>
Twitter: @prabhantsingh Linkedin: https://www.linkedin.com/in/prabhantsingh Github: @prabhant