Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Attacks on Machine Learning
Search
prabhant
October 27, 2017
Programming
0
570
Attacks on Machine Learning
Presentation for my talk on attacks on machine learning at PyconUK 2017
prabhant
October 27, 2017
Tweet
Share
More Decks by prabhant
See All by prabhant
Masters Thesis
prabhant
0
48
Class Imbalance Problem
prabhant
0
190
Gotchas of Pandas
prabhant
0
120
Other Decks in Programming
See All in Programming
Nitro v3
kazupon
2
280
Snowflake リリースに注意を払いたくなる話
masaaya
0
110
ネストしたdata classの面倒な更新にさようなら!Lensを作って理解するArrowのOpticsの世界
shiita0903
1
320
Agentに至る道 〜なぜLLMは自動でコードを書けるようになったのか〜
mackee
4
780
JEP 496 と JEP 497 から学ぶ耐量子計算機暗号入門 / Learning Post-Quantum Crypto Basics from JEP 496 & 497
mackey0225
2
220
PyCon mini 東海 2025「個人ではじめるマルチAIエージェント入門 〜LangChain × LangGraphでアイデアを形にするステップ〜」
komofr
3
940
ビルドプロセスをデバッグしよう!
yt8492
0
300
AI駆動開発ライフサイクル(AI-DLC)のホワイトペーパーを解説
swxhariu5
0
670
「10分以内に機能を消せる状態」 の実現のためにやっていること
togishima
1
280
Atomics APIを知る / Understanding Atomics API
ssssota
1
130
Web エンジニアが JavaScript で AI Agent を作る / JSConf JP 2025 sponsor session
izumin5210
3
1.1k
KoogではじめるAIエージェント開発
hiroaki404
1
460
Featured
See All Featured
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.2k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Documentation Writing (for coders)
carmenintech
76
5.1k
Thoughts on Productivity
jonyablonski
73
4.9k
The Pragmatic Product Professional
lauravandoore
36
7k
Building an army of robots
kneath
306
46k
Designing for humans not robots
tammielis
254
26k
A designer walks into a library…
pauljervisheath
210
24k
How STYLIGHT went responsive
nonsquared
100
5.9k
Bash Introduction
62gerente
615
210k
Transcript
None
About me • Security + Data science • Master’s student
at University of Tartu, Estonia
• What’s adversarial ML
• What’s adversarial ML • Goals of adversarial examples
• What’s adversarial ML • Goals of adversarial examples •
Algorithms to craft adversarial examples
• What’s adversarial ML • Goals of adversarial examples •
Algorithms to craft adversarial examples • Defense against adversarial examples(BONUS)
What’s Machine learning?
What’s Adversarial ML
What’s Adversarial ML =Security + ML
History Lesson!!
Where it started: • PRALab Unica
Where it started: • PRALab Unica Now: • Everyone First
paper: https://arxiv.org/pdf/1312.6199.pdf
Source: https://pralab.diee.unica.it/en/wild-patterns
Types of attacks • Whitebox • Blackbox
Ways to Attacks
Ways to Attacks Poisoning training data (train time attack)
Ways to Attacks Poisoning training data (Train time attack) Crafting
adversarial examples (Test time attack)
Adversarial examples goals • Confidence reduction: reduce the output confidence
classification
Adversarial examples goals • Confidence reduction • Misclassification: Changing the
output class
Adversarial examples goals • Confidence reduction • Misclassification • Targeted
misclassification: produce inputs that produce the output of a specific class
Adversarial examples goals • Confidence reduction • Misclassification • Targeted
misclassification • Source target misclassification: specific input gives specific output
How does Attacking ML models work?
How adversarial Examples work Source: cleverhans.io
Deep Neural Networks are Easily Fooled: High Confidence Predictions for
Unrecognizable Images :https://arxiv.org/pdf/1412.1897.pdf
Source: Adversarial Examples for Evaluating Reading Comprehension Systems Source: https://arxiv.org/pdf/1707.07328.pdf
Algorithms to craft adversarial examples for NN 1. FGSM: fast
gradient sign method
Algorithms to craft adversarial examples for NN 1. FGSM: fast
gradient sign method 2. JSMA: jacobian based saliency map attack
Algorithms to craft adversarial examples for NN 1. FGSM: fast
gradient sign method 2. JSMA: jacobian based saliency map attack 3. Carlini wagner attack
Algorithms to craft adversarial examples for NN 1. FGSM: fast
gradient sign method 2. JSMA: jacobian based saliency map attack 3. Carlini wagner attack 4. DeepFool
Algorithms to craft adversarial examples for NN 1. FGSM: fast
gradient sign method 2. JSMA: jacobian based saliency map attack 3. Carlini wagner attack 4. DeepFool 5. The Basic Iterative Method
Algorithms to craft adversarial examples for NN 1. FGSM: fast
gradient sign method 2. JSMA: jacobian based saliency map attack 3. Carlini wagner attack 4. DeepFool 5. The Basic Iterative Method 6. EAD: Elastic-Net Attacks
Algorithms to craft adversarial examples for NN 1. FGSM: fast
gradient sign method 2. JSMA: jacobian based saliency map attack 3. Carlini wagner attack 4. DeepFool 5. The Basic Iterative Method 6. EAD: Elastic-Net Attacks 7. Projected Gradient Descent Attack PS: these are only the famous one’s
BlackBox : How can it even be possible :( ?
Transferability The Space of Transferable Adversarial Examples: https://arxiv.org/pdf/1704.03453.pdf
Why should I Care?
Why should I Care?
Why should I Care?
Why should I Care?
None
But they aren’t that easy to make.. Are they :(
None
Then How to defend the Models against adversarial examples •
Adversarial Training ◦ Ensemble adversarial training • Defensive distillation
None
Libraries and resources • Cleverhans(Tensorflow) • FoolBox(bethgelab) • Secure ML
Library(not released) • Tools from PRA Lab • My blog
Thank You Q/A time <Don’t ask “WHY” because nobody knows>
Twitter: @prabhantsingh Linkedin: https://www.linkedin.com/in/prabhantsingh Github: @prabhant