Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Attacks on Machine Learning
Search
prabhant
October 27, 2017
Programming
0
530
Attacks on Machine Learning
Presentation for my talk on attacks on machine learning at PyconUK 2017
prabhant
October 27, 2017
Tweet
Share
More Decks by prabhant
See All by prabhant
Masters Thesis
prabhant
0
43
Class Imbalance Problem
prabhant
0
160
Gotchas of Pandas
prabhant
0
110
Other Decks in Programming
See All in Programming
もう僕は OpenAPI を書きたくない
sgash708
5
1.6k
Honoのおもしろいミドルウェアをみてみよう
yusukebe
1
210
苦しいTiDBへの移行を乗り越えて快適な運用を目指す
leveragestech
0
580
XStateを用いた堅牢なReact Components設計~複雑なClient Stateをシンプルに~ @React Tokyo ミートアップ #2
kfurusho
1
900
PHPのバージョンアップ時にも役立ったAST
matsuo_atsushi
0
110
責務と認知負荷を整える! 抽象レベルを意識した関心の分離
yahiru
2
400
『品質』という言葉が嫌いな理由
korimu
0
160
AIの力でお手軽Chrome拡張機能作り
taiseiue
0
170
『テスト書いた方が開発が早いじゃん』を解き明かす #phpcon_nagoya
o0h
PRO
2
210
バックエンドのためのアプリ内課金入門 (サブスク編)
qnighy
8
1.8k
GitHub Actions × RAGでコードレビューの検証の結果
sho_000
0
260
プログラミング言語学習のススメ / why-do-i-learn-programming-language
yashi8484
0
130
Featured
See All Featured
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
129
19k
For a Future-Friendly Web
brad_frost
176
9.5k
Being A Developer After 40
akosma
89
590k
RailsConf 2023
tenderlove
29
1k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
7k
Reflections from 52 weeks, 52 projects
jeffersonlam
348
20k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
330
21k
GraphQLの誤解/rethinking-graphql
sonatard
68
10k
How to Ace a Technical Interview
jacobian
276
23k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Transcript
None
About me • Security + Data science • Master’s student
at University of Tartu, Estonia
• What’s adversarial ML
• What’s adversarial ML • Goals of adversarial examples
• What’s adversarial ML • Goals of adversarial examples •
Algorithms to craft adversarial examples
• What’s adversarial ML • Goals of adversarial examples •
Algorithms to craft adversarial examples • Defense against adversarial examples(BONUS)
What’s Machine learning?
What’s Adversarial ML
What’s Adversarial ML =Security + ML
History Lesson!!
Where it started: • PRALab Unica
Where it started: • PRALab Unica Now: • Everyone First
paper: https://arxiv.org/pdf/1312.6199.pdf
Source: https://pralab.diee.unica.it/en/wild-patterns
Types of attacks • Whitebox • Blackbox
Ways to Attacks
Ways to Attacks Poisoning training data (train time attack)
Ways to Attacks Poisoning training data (Train time attack) Crafting
adversarial examples (Test time attack)
Adversarial examples goals • Confidence reduction: reduce the output confidence
classification
Adversarial examples goals • Confidence reduction • Misclassification: Changing the
output class
Adversarial examples goals • Confidence reduction • Misclassification • Targeted
misclassification: produce inputs that produce the output of a specific class
Adversarial examples goals • Confidence reduction • Misclassification • Targeted
misclassification • Source target misclassification: specific input gives specific output
How does Attacking ML models work?
How adversarial Examples work Source: cleverhans.io
Deep Neural Networks are Easily Fooled: High Confidence Predictions for
Unrecognizable Images :https://arxiv.org/pdf/1412.1897.pdf
Source: Adversarial Examples for Evaluating Reading Comprehension Systems Source: https://arxiv.org/pdf/1707.07328.pdf
Algorithms to craft adversarial examples for NN 1. FGSM: fast
gradient sign method
Algorithms to craft adversarial examples for NN 1. FGSM: fast
gradient sign method 2. JSMA: jacobian based saliency map attack
Algorithms to craft adversarial examples for NN 1. FGSM: fast
gradient sign method 2. JSMA: jacobian based saliency map attack 3. Carlini wagner attack
Algorithms to craft adversarial examples for NN 1. FGSM: fast
gradient sign method 2. JSMA: jacobian based saliency map attack 3. Carlini wagner attack 4. DeepFool
Algorithms to craft adversarial examples for NN 1. FGSM: fast
gradient sign method 2. JSMA: jacobian based saliency map attack 3. Carlini wagner attack 4. DeepFool 5. The Basic Iterative Method
Algorithms to craft adversarial examples for NN 1. FGSM: fast
gradient sign method 2. JSMA: jacobian based saliency map attack 3. Carlini wagner attack 4. DeepFool 5. The Basic Iterative Method 6. EAD: Elastic-Net Attacks
Algorithms to craft adversarial examples for NN 1. FGSM: fast
gradient sign method 2. JSMA: jacobian based saliency map attack 3. Carlini wagner attack 4. DeepFool 5. The Basic Iterative Method 6. EAD: Elastic-Net Attacks 7. Projected Gradient Descent Attack PS: these are only the famous one’s
BlackBox : How can it even be possible :( ?
Transferability The Space of Transferable Adversarial Examples: https://arxiv.org/pdf/1704.03453.pdf
Why should I Care?
Why should I Care?
Why should I Care?
Why should I Care?
None
But they aren’t that easy to make.. Are they :(
None
Then How to defend the Models against adversarial examples •
Adversarial Training ◦ Ensemble adversarial training • Defensive distillation
None
Libraries and resources • Cleverhans(Tensorflow) • FoolBox(bethgelab) • Secure ML
Library(not released) • Tools from PRA Lab • My blog
Thank You Q/A time <Don’t ask “WHY” because nobody knows>
Twitter: @prabhantsingh Linkedin: https://www.linkedin.com/in/prabhantsingh Github: @prabhant