Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Wykorzystanie klastra Apache Mesos w deploymenc...
Search
Kamil Warguła
November 29, 2015
Technology
0
300
Wykorzystanie klastra Apache Mesos w deploymencie aplikacji pythonowych
Kamil Warguła
November 29, 2015
Tweet
Share
Other Decks in Technology
See All in Technology
VideoMamba: State Space Model for Efficient Video Understanding
chou500
0
190
Lambda10周年!Lambdaは何をもたらしたか
smt7174
2
110
なぜ今 AI Agent なのか _近藤憲児
kenjikondobai
4
1.3k
AIチャットボット開発への生成AI活用
ryomrt
0
170
マルチプロダクトな開発組織で 「開発生産性」に向き合うために試みたこと / Improving Multi-Product Dev Productivity
sugamasao
1
300
Amazon Personalizeのレコメンドシステム構築、実際何するの?〜大体10分で具体的なイメージをつかむ〜
kniino
1
100
SREが投資するAIOps ~ペアーズにおけるLLM for Developerへの取り組み~
takumiogawa
1
100
ドメイン名の終活について - JPAAWG 7th -
mikit
33
20k
第1回 国土交通省 データコンペ参加者向け勉強会③- Snowflake x estie編 -
estie
0
120
テストコード品質を高めるためにMutation Testingライブラリ・Strykerを実戦導入してみた話
ysknsid25
7
2.6k
【令和最新版】AWS Direct Connectと愉快なGWたちのおさらい
minorun365
PRO
5
750
透過型SMTPプロキシによる送信メールの可観測性向上: Update Edition / Improved observability of outgoing emails with transparent smtp proxy: Update edition
linyows
2
210
Featured
See All Featured
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
42
9.2k
Practical Orchestrator
shlominoach
186
10k
For a Future-Friendly Web
brad_frost
175
9.4k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
48k
GraphQLとの向き合い方2022年版
quramy
43
13k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
26
1.4k
Rails Girls Zürich Keynote
gr2m
94
13k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
Into the Great Unknown - MozCon
thekraken
32
1.5k
RailsConf 2023
tenderlove
29
900
Become a Pro
speakerdeck
PRO
25
5k
Transcript
Wykorzystanie klastra Apache Mesos w deploymencie aplikacji pythonowych Kamil Warguła
1 github.com/quamilek
[email protected]
2
Apache Mesos 3
What is Mesos? Apache Mesos abstracts CPU, memory, storage, and
other compute resources away from machines (physical or virtual), enabling fault-tolerant and elastic distributed systems to easily be built and run effectively. 4
Mesos architecture Mesos master Standby master Standby master ZooKeeper quorum
Mesos slave Framework executor task Mesos slave Framework executor task Mesos slave Marathon executor task Hadoop executor task Framework scheduler 5
Resource allocation 6
Mesos UI 7
Mesos frameworks 8
Marathon 9
Marathon Marathon is an Apache Mesos framework for long-running applications
10
Marathon features • Web UI • JSON/REST API • HA
• Constraints • Health Checks • Event Subscription • Basic Auth and SSL 11
Resource utilization 12
Resource utilization 13
Mesos saves $$$ 14 old way mesos way
simple python REST app import falcon import json class ExampleResource:
def on_get(self, req, resp): data = {'foo': 'bar'} resp.body = json.dumps(data) api = falcon.API() api.add_route('/', ExampleResource()) 15
integration with gunicorn from gunicorn.app.base import BaseApplication class StandaloneApplication(BaseApplication): ...
def _get_config(): ... def main(): api = falcon.API() api.add_route('/', Example Resource()) config = _get_config() StandaloneApplication(api, config).run() if __name__ == '__main__': main() 16
How to run virtualenv env pip install falcon==0.3.0 gunicorn==19.3.0 source
env/bin/activate python api.py -p 8099 17
Pack requirements with PEX pex -v -r falcon==0.3.0 -r gunicorn==19.3.0
-o app.pex 18
How to run app with pex ./app.pex api.py -p 8099
19
DEMO 20
Marathon UI 21
Marathon app definition { "id": "appname", "cmd": "python my_app.py", "cpus":
0.5, "instances": 1, "mem": 64, "uris": [ "http://artifacts.local/my_app_0.1.0.tar.gz" ] } 22
Marathon - deploy python app DEMO 23
app configuration • environment variables • distributed configuration service (ZooKeeper,
ETCD) 24
Service Discovery • Marathon-Consul • Mesos-DNS 25
Load Balancing • haproxy-marathon-bridge 26
Scale app - manual import json import requests url =
'http://marathon.local/v2/apps/myapp' data = {'instances': 5} requests.put(url, data=json.dumps(data)) 27
Scale app - manual DEMO 28
Autoscale app MIN_INSTANCES_COUNT = 2 MAX_INSTANCES_COUNT = 20 if overloaded_instances
>= 0.9 * total_instances: total_instances += 2 if total_instances <= MAX_INSTANCES_COUNT: scale_app(total_instances) elif overloaded_instances <= 0.5 * total_instances: total_instances -= 2 if total_instances >= MIN_INSTANCES_COUNT: scale_app(total_instances) 29
Autoscale app DEMO 30
Thank you! 31 goo.gl/qWivrx
Q/A? 32 goo.gl/qWivrx