Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Wykorzystanie klastra Apache Mesos w deploymenc...
Search
Kamil Warguła
November 29, 2015
Technology
0
330
Wykorzystanie klastra Apache Mesos w deploymencie aplikacji pythonowych
Kamil Warguła
November 29, 2015
Tweet
Share
Other Decks in Technology
See All in Technology
KotlinConf 2025_イベントレポート
sony
1
140
プラットフォーム転換期におけるGitHub Copilot活用〜Coding agentがそれを加速するか〜 / Leveraging GitHub Copilot During Platform Transition Periods
aeonpeople
1
250
ブロックテーマ時代における、テーマの CSS について考える Toro_Unit / 2025.09.13 @ Shinshu WordPress Meetup
torounit
0
130
初めてAWSを使うときのセキュリティ覚書〜初心者支部編〜
cmusudakeisuke
1
290
Unlocking the Power of AI Agents with LINE Bot MCP Server
linedevth
0
130
新規プロダクトでプロトタイプから正式リリースまでNext.jsで開発したリアル
kawanoriku0
1
410
TS-S205_昨年対比2倍以上の機能追加を実現するデータ基盤プロジェクトでのAI活用について
kaz3284
1
230
データ分析エージェント Socrates の育て方
na0
8
3.1k
テストを軸にした生き残り術
kworkdev
PRO
0
220
AIがコード書きすぎ問題にはAIで立ち向かえ
jyoshise
4
1k
なぜテストマネージャの視点が 必要なのか? 〜 一歩先へ進むために 〜
moritamasami
0
240
DroidKaigi 2025 Androidエンジニアとしてのキャリア
mhidaka
2
400
Featured
See All Featured
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
Building an army of robots
kneath
306
46k
YesSQL, Process and Tooling at Scale
rocio
173
14k
What's in a price? How to price your products and services
michaelherold
246
12k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Become a Pro
speakerdeck
PRO
29
5.5k
Typedesign – Prime Four
hannesfritz
42
2.8k
Facilitating Awesome Meetings
lara
55
6.5k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Code Reviewing Like a Champion
maltzj
525
40k
BBQ
matthewcrist
89
9.8k
Transcript
Wykorzystanie klastra Apache Mesos w deploymencie aplikacji pythonowych Kamil Warguła
1 github.com/quamilek
[email protected]
2
Apache Mesos 3
What is Mesos? Apache Mesos abstracts CPU, memory, storage, and
other compute resources away from machines (physical or virtual), enabling fault-tolerant and elastic distributed systems to easily be built and run effectively. 4
Mesos architecture Mesos master Standby master Standby master ZooKeeper quorum
Mesos slave Framework executor task Mesos slave Framework executor task Mesos slave Marathon executor task Hadoop executor task Framework scheduler 5
Resource allocation 6
Mesos UI 7
Mesos frameworks 8
Marathon 9
Marathon Marathon is an Apache Mesos framework for long-running applications
10
Marathon features • Web UI • JSON/REST API • HA
• Constraints • Health Checks • Event Subscription • Basic Auth and SSL 11
Resource utilization 12
Resource utilization 13
Mesos saves $$$ 14 old way mesos way
simple python REST app import falcon import json class ExampleResource:
def on_get(self, req, resp): data = {'foo': 'bar'} resp.body = json.dumps(data) api = falcon.API() api.add_route('/', ExampleResource()) 15
integration with gunicorn from gunicorn.app.base import BaseApplication class StandaloneApplication(BaseApplication): ...
def _get_config(): ... def main(): api = falcon.API() api.add_route('/', Example Resource()) config = _get_config() StandaloneApplication(api, config).run() if __name__ == '__main__': main() 16
How to run virtualenv env pip install falcon==0.3.0 gunicorn==19.3.0 source
env/bin/activate python api.py -p 8099 17
Pack requirements with PEX pex -v -r falcon==0.3.0 -r gunicorn==19.3.0
-o app.pex 18
How to run app with pex ./app.pex api.py -p 8099
19
DEMO 20
Marathon UI 21
Marathon app definition { "id": "appname", "cmd": "python my_app.py", "cpus":
0.5, "instances": 1, "mem": 64, "uris": [ "http://artifacts.local/my_app_0.1.0.tar.gz" ] } 22
Marathon - deploy python app DEMO 23
app configuration • environment variables • distributed configuration service (ZooKeeper,
ETCD) 24
Service Discovery • Marathon-Consul • Mesos-DNS 25
Load Balancing • haproxy-marathon-bridge 26
Scale app - manual import json import requests url =
'http://marathon.local/v2/apps/myapp' data = {'instances': 5} requests.put(url, data=json.dumps(data)) 27
Scale app - manual DEMO 28
Autoscale app MIN_INSTANCES_COUNT = 2 MAX_INSTANCES_COUNT = 20 if overloaded_instances
>= 0.9 * total_instances: total_instances += 2 if total_instances <= MAX_INSTANCES_COUNT: scale_app(total_instances) elif overloaded_instances <= 0.5 * total_instances: total_instances -= 2 if total_instances >= MIN_INSTANCES_COUNT: scale_app(total_instances) 29
Autoscale app DEMO 30
Thank you! 31 goo.gl/qWivrx
Q/A? 32 goo.gl/qWivrx