Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Wykorzystanie klastra Apache Mesos w deploymenc...
Search
Kamil Warguła
November 29, 2015
Technology
0
340
Wykorzystanie klastra Apache Mesos w deploymencie aplikacji pythonowych
Kamil Warguła
November 29, 2015
Tweet
Share
Other Decks in Technology
See All in Technology
AI時代に必要なデータプラットフォームの要件とは by @Kazaneya_PR / 20251107
kazaneya
PRO
3
450
kotlin-lsp の開発開始に触発されて、Emacs で Kotlin 開発に挑戦した記録 / kotlin‑lsp as a Catalyst: My Journey to Kotlin Development in Emacs
nabeo
2
310
ピープルウエア x スタートアップ
operando
1
3.2k
AIとの協業で実現!レガシーコードをKotlinらしく生まれ変わらせる実践ガイド
zozotech
PRO
2
320
進化する大規模言語モデル評価: Swallowプロジェクトにおける実践と知見
chokkan
PRO
3
460
ゼロコード計装導入後のカスタム計装でさらに可観測性を高めよう
sansantech
PRO
1
690
アノテーション作業書作成のGood Practice
cierpa0905
PRO
1
390
DSPy入門
tomehirata
6
880
OpenCensusと歩んだ7年間
bgpat
0
330
ラスベガスの歩き方 2025年版(re:Invent 事前勉強会)
junjikoide
0
910
Kotlinで型安全にバイテンポラルデータを扱いたい! ReladomoラッパーをAIと実装してみた話
itohiro73
3
230
AIでデータ活用を加速させる取り組み / Leveraging AI to accelerate data utilization
okiyuki99
6
1.7k
Featured
See All Featured
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3k
Gamification - CAS2011
davidbonilla
81
5.5k
Become a Pro
speakerdeck
PRO
29
5.6k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
The World Runs on Bad Software
bkeepers
PRO
72
11k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Designing Experiences People Love
moore
142
24k
Writing Fast Ruby
sferik
630
62k
Facilitating Awesome Meetings
lara
57
6.6k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.5k
How to Ace a Technical Interview
jacobian
280
24k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Transcript
Wykorzystanie klastra Apache Mesos w deploymencie aplikacji pythonowych Kamil Warguła
1 github.com/quamilek
[email protected]
2
Apache Mesos 3
What is Mesos? Apache Mesos abstracts CPU, memory, storage, and
other compute resources away from machines (physical or virtual), enabling fault-tolerant and elastic distributed systems to easily be built and run effectively. 4
Mesos architecture Mesos master Standby master Standby master ZooKeeper quorum
Mesos slave Framework executor task Mesos slave Framework executor task Mesos slave Marathon executor task Hadoop executor task Framework scheduler 5
Resource allocation 6
Mesos UI 7
Mesos frameworks 8
Marathon 9
Marathon Marathon is an Apache Mesos framework for long-running applications
10
Marathon features • Web UI • JSON/REST API • HA
• Constraints • Health Checks • Event Subscription • Basic Auth and SSL 11
Resource utilization 12
Resource utilization 13
Mesos saves $$$ 14 old way mesos way
simple python REST app import falcon import json class ExampleResource:
def on_get(self, req, resp): data = {'foo': 'bar'} resp.body = json.dumps(data) api = falcon.API() api.add_route('/', ExampleResource()) 15
integration with gunicorn from gunicorn.app.base import BaseApplication class StandaloneApplication(BaseApplication): ...
def _get_config(): ... def main(): api = falcon.API() api.add_route('/', Example Resource()) config = _get_config() StandaloneApplication(api, config).run() if __name__ == '__main__': main() 16
How to run virtualenv env pip install falcon==0.3.0 gunicorn==19.3.0 source
env/bin/activate python api.py -p 8099 17
Pack requirements with PEX pex -v -r falcon==0.3.0 -r gunicorn==19.3.0
-o app.pex 18
How to run app with pex ./app.pex api.py -p 8099
19
DEMO 20
Marathon UI 21
Marathon app definition { "id": "appname", "cmd": "python my_app.py", "cpus":
0.5, "instances": 1, "mem": 64, "uris": [ "http://artifacts.local/my_app_0.1.0.tar.gz" ] } 22
Marathon - deploy python app DEMO 23
app configuration • environment variables • distributed configuration service (ZooKeeper,
ETCD) 24
Service Discovery • Marathon-Consul • Mesos-DNS 25
Load Balancing • haproxy-marathon-bridge 26
Scale app - manual import json import requests url =
'http://marathon.local/v2/apps/myapp' data = {'instances': 5} requests.put(url, data=json.dumps(data)) 27
Scale app - manual DEMO 28
Autoscale app MIN_INSTANCES_COUNT = 2 MAX_INSTANCES_COUNT = 20 if overloaded_instances
>= 0.9 * total_instances: total_instances += 2 if total_instances <= MAX_INSTANCES_COUNT: scale_app(total_instances) elif overloaded_instances <= 0.5 * total_instances: total_instances -= 2 if total_instances >= MIN_INSTANCES_COUNT: scale_app(total_instances) 29
Autoscale app DEMO 30
Thank you! 31 goo.gl/qWivrx
Q/A? 32 goo.gl/qWivrx