Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Look ma' I know my algorithms!
Search
Lucia Escanellas
October 24, 2014
Programming
7
450
Look ma' I know my algorithms!
RubyConf Argentina 2014
Lucia Escanellas
October 24, 2014
Tweet
Share
Other Decks in Programming
See All in Programming
CDKを使ったPagerDuty連携インフラのテンプレート化
shibuya_shogo
0
110
なぜイベント駆動が必要なのか - CQRS/ESで解く複雑系システムの課題 -
j5ik2o
14
4.7k
はじめての Go * WASM *OCR
sgash708
1
110
SwiftUI Viewの責務分離
elmetal
PRO
2
280
Honoとフロントエンドの 型安全性について
yodaka
7
1.5k
Kotlinの開発でも AIをいい感じに使いたい / Making the Most of AI in Kotlin Development
kohii00
5
1.4k
仕様変更に耐えるための"今の"DRY原則を考える
mkmk884
9
3.2k
ファインディLT_ポケモン対戦の定量的分析
fufufukakaka
0
930
データの整合性を保つ非同期処理アーキテクチャパターン / Async Architecture Patterns
mokuo
55
19k
AIプログラミング雑キャッチアップ
yuheinakasaka
19
4.7k
dbt Pythonモデルで実現するSnowflake活用術
trsnium
0
260
Learning Kotlin with detekt
inouehi
1
140
Featured
See All Featured
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
2.1k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
12
1k
Gamification - CAS2011
davidbonilla
80
5.2k
Rebuilding a faster, lazier Slack
samanthasiow
80
8.9k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
175
52k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
45
9.4k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
27
1.6k
BBQ
matthewcrist
87
9.5k
Building an army of robots
kneath
303
45k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
10
1.3k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
114
50k
4 Signs Your Business is Dying
shpigford
182
22k
Transcript
Look ma’, I know my algorithms!
Lucia Escanellas raviolicode
Attributions https://flic.kr/p/6DDvQP https://flic.kr/p/qv5Zp https://flic.kr/p/6SaZsP https://flic.kr/p/edauSN https://flic.kr/p/4uNfK8 https://flic.kr/p/o9ggdk https://flic.kr/p/6kfuHz https://flic.kr/p/5kBtbS
Speed Speed
Zen Elegance Elegance
Toolbox
Theory Theory
This example Not so common
FROM >30HS TO 18 S
WHY USE ORDERS? ALGORITHMS ARE POWERFUL AVOID TRAPS IN RUBY
WHY USE ORDERS? ALGORITHMS ARE POWERFUL AVOID TRAPS IN RUBY
WHY USING ORDERS? ALGORITHMS ARE POWERFUL AVOID TRAPS IN RUBY
Let’s have a look at the PROBLEM
Ordered array How many pairs (a,b) where a ≠ b
-100 <= a + b <= 100
Array: [-100, 1, 100]
Array: [-100, 1, 100] (-100, 1), (-100, 100), (1, 100)
Array: [-100, 1, 100] (-100, 1), (-100, 100), (1, 100)
-100 + 1 = 99 YES
Array: [-100, 1, 100] (-100, 1), (-100, 100), (1, 100)
-100 + 100 = 0 YES
Array: [-100, 1, 100] (-100, 1), (-100, 100), (1, 100)
1 + 100 = 101 NO
Array: [-100, 1, 100] (-100, 1), (-100, 100), (1, 100)
Result: 2
First solution Combinations of 2 elements Filter by: -100 <=
a + b <= 100
def count! combinations = @numbers.combination(2).to_a! ! combinations! .map{ |a,b| a
+ b }! .select do |sum|! sum.abs <= THRESHOLD! end.size! end
10K takes 10s BUT 100M takes 30hs
Time to buy a NEW LAPTOP!
Big O notation How WELL an algorithm SCALES as the
DATA involved INCREASES
Calc Array size (length=N) Count elements one by one: O(N)
Calc Array size (length=N) Count elements one by one: O(N)
Length stored in variable: O(1)
Graphical Math Properties Order Mathematical Properties
Remember: f < g => O(f + g) = O(g)
O(K . f) = O(f) O(1) < O(ln N) < O(N) < O(N2) < O(eN)
Ex: Binary Search Find 7 in [1, 2, 3, 4,
5, 6, 7, 8] 1. element in the middle is 5 2. 5 == 7 ? NO 3. 5 < 7 ? YES => Find 7 in [6, 7, 8] Step 1
! Find 7 in [0, 1, 2, 3, 4, 5,
6, 7, 8] 1. element in the middle is 7 2. 7 == 7 ? YES! FOUND IT!! Step 2
Ex: Binary Search Worst case: ceil ( Log2 N )
23 = 8 ONLY 3 steps
Typical examples Access to a Hash O(1) Binary search O(log
N) Sequential search O(N) Traverse a matrix NxN O(N2)
DON’T JUST BELIEVE ME fooplot.com
BUT raviolicode, I’m getting BORED
I WANT CONCURRENCY I WANT CONCURRENCY
wait… was it Concurrency? or Parallelism?
None
None
None
None
None
None
GIL+CPU-bound NO I/O OPERATIONS concurrency = OVERHEAD
NOT what I was expecting
Parallelism... Parallelism
None
What do we REALLY get? O(N2 / cores) = O(N
2 ) jRubyGo Scala
NO Spoilers O(N2) O(N.log(N)) O(N)
THINKING algorithms is as IMPORTANT as ANY OTHER technique
BYE.
Wait! It's still slow. Wait! It’s still SLOW
Given [1,2,3,4,5] Take 1, then print [5,4,3,2] Take 2, then
print [5,4,3] and so on…
What’s the ORDER of this code? @nums.each_with_index do |a,i|! !
puts @nums.slice(i+1,N).reverse! .inspect! end
What’s the ORDER of this code? @nums.each_with_index do |a,i|! !
puts @nums.slice(i+1,N).reverse! .inspect! end Looks like O(N)
What’s the ORDER of this code? @nums.each_with_index do |a,i|! !
puts @nums.slice(i+1,N).reverse! .inspect! end Behaves like O(N2)
Let’s Look at the DOCS Ruby-Doc.org ! #reverse
O(N) hidden! O(N)!
What’s the ORDER of this code? @nums.each_with_index do |a,i|! !
puts @nums.slice(i+1,N).reverse! .inspect! end O(N2)!
Leaky abstractions LEAKY ABSTRACTIONS
All Non-trivial abstractions are LEAKY to some degree
ABSTRACTIONS DO NOT really SIMPLIFY as they were meant to
Knowing THE ALGORITHMS Behind everyday methods PAYS OFF
Thanks :) Thanks :)