Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Look ma' I know my algorithms!
Search
Lucia Escanellas
October 24, 2014
Programming
7
440
Look ma' I know my algorithms!
RubyConf Argentina 2014
Lucia Escanellas
October 24, 2014
Tweet
Share
Other Decks in Programming
See All in Programming
テストコード文化を0から作り、変化し続けた組織
kazatohiei
2
1.5k
テストコード書いてみませんか?
onopon
2
130
Spatial Rendering for Apple Vision Pro
warrenm
0
110
これが俺の”自分戦略” プロセスを楽しんでいこう! - Developers CAREER Boost 2024
niftycorp
PRO
0
190
Webエンジニア主体のモバイルチームの 生産性を高く保つためにやったこと
igreenwood
0
340
tidymodelsによるtidyな生存時間解析 / Japan.R2024
dropout009
1
790
LLM Supervised Fine-tuningの理論と実践
datanalyticslabo
7
1.3k
SymfonyCon Vienna 2025: Twig, still relevant in 2025?
fabpot
3
1.2k
PHPで作るWebSocketサーバー ~リアクティブなアプリケーションを知るために~ / WebSocket Server in PHP - To know reactive applications
seike460
PRO
2
450
nekko cloudにおけるProxmox VE利用事例
irumaru
3
430
開発者とQAの越境で自動テストが増える開発プロセスを実現する
92thunder
1
190
生成AIでGitHubソースコード取得して仕様書を作成
shukob
0
460
Featured
See All Featured
Adopting Sorbet at Scale
ufuk
73
9.1k
No one is an island. Learnings from fostering a developers community.
thoeni
19
3k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
232
17k
How To Stay Up To Date on Web Technology
chriscoyier
789
250k
The Cult of Friendly URLs
andyhume
78
6.1k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Designing for Performance
lara
604
68k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.3k
Typedesign – Prime Four
hannesfritz
40
2.4k
Producing Creativity
orderedlist
PRO
341
39k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
665
120k
Gamification - CAS2011
davidbonilla
80
5.1k
Transcript
Look ma’, I know my algorithms!
Lucia Escanellas raviolicode
Attributions https://flic.kr/p/6DDvQP https://flic.kr/p/qv5Zp https://flic.kr/p/6SaZsP https://flic.kr/p/edauSN https://flic.kr/p/4uNfK8 https://flic.kr/p/o9ggdk https://flic.kr/p/6kfuHz https://flic.kr/p/5kBtbS
Speed Speed
Zen Elegance Elegance
Toolbox
Theory Theory
This example Not so common
FROM >30HS TO 18 S
WHY USE ORDERS? ALGORITHMS ARE POWERFUL AVOID TRAPS IN RUBY
WHY USE ORDERS? ALGORITHMS ARE POWERFUL AVOID TRAPS IN RUBY
WHY USING ORDERS? ALGORITHMS ARE POWERFUL AVOID TRAPS IN RUBY
Let’s have a look at the PROBLEM
Ordered array How many pairs (a,b) where a ≠ b
-100 <= a + b <= 100
Array: [-100, 1, 100]
Array: [-100, 1, 100] (-100, 1), (-100, 100), (1, 100)
Array: [-100, 1, 100] (-100, 1), (-100, 100), (1, 100)
-100 + 1 = 99 YES
Array: [-100, 1, 100] (-100, 1), (-100, 100), (1, 100)
-100 + 100 = 0 YES
Array: [-100, 1, 100] (-100, 1), (-100, 100), (1, 100)
1 + 100 = 101 NO
Array: [-100, 1, 100] (-100, 1), (-100, 100), (1, 100)
Result: 2
First solution Combinations of 2 elements Filter by: -100 <=
a + b <= 100
def count! combinations = @numbers.combination(2).to_a! ! combinations! .map{ |a,b| a
+ b }! .select do |sum|! sum.abs <= THRESHOLD! end.size! end
10K takes 10s BUT 100M takes 30hs
Time to buy a NEW LAPTOP!
Big O notation How WELL an algorithm SCALES as the
DATA involved INCREASES
Calc Array size (length=N) Count elements one by one: O(N)
Calc Array size (length=N) Count elements one by one: O(N)
Length stored in variable: O(1)
Graphical Math Properties Order Mathematical Properties
Remember: f < g => O(f + g) = O(g)
O(K . f) = O(f) O(1) < O(ln N) < O(N) < O(N2) < O(eN)
Ex: Binary Search Find 7 in [1, 2, 3, 4,
5, 6, 7, 8] 1. element in the middle is 5 2. 5 == 7 ? NO 3. 5 < 7 ? YES => Find 7 in [6, 7, 8] Step 1
! Find 7 in [0, 1, 2, 3, 4, 5,
6, 7, 8] 1. element in the middle is 7 2. 7 == 7 ? YES! FOUND IT!! Step 2
Ex: Binary Search Worst case: ceil ( Log2 N )
23 = 8 ONLY 3 steps
Typical examples Access to a Hash O(1) Binary search O(log
N) Sequential search O(N) Traverse a matrix NxN O(N2)
DON’T JUST BELIEVE ME fooplot.com
BUT raviolicode, I’m getting BORED
I WANT CONCURRENCY I WANT CONCURRENCY
wait… was it Concurrency? or Parallelism?
None
None
None
None
None
None
GIL+CPU-bound NO I/O OPERATIONS concurrency = OVERHEAD
NOT what I was expecting
Parallelism... Parallelism
None
What do we REALLY get? O(N2 / cores) = O(N
2 ) jRubyGo Scala
NO Spoilers O(N2) O(N.log(N)) O(N)
THINKING algorithms is as IMPORTANT as ANY OTHER technique
BYE.
Wait! It's still slow. Wait! It’s still SLOW
Given [1,2,3,4,5] Take 1, then print [5,4,3,2] Take 2, then
print [5,4,3] and so on…
What’s the ORDER of this code? @nums.each_with_index do |a,i|! !
puts @nums.slice(i+1,N).reverse! .inspect! end
What’s the ORDER of this code? @nums.each_with_index do |a,i|! !
puts @nums.slice(i+1,N).reverse! .inspect! end Looks like O(N)
What’s the ORDER of this code? @nums.each_with_index do |a,i|! !
puts @nums.slice(i+1,N).reverse! .inspect! end Behaves like O(N2)
Let’s Look at the DOCS Ruby-Doc.org ! #reverse
O(N) hidden! O(N)!
What’s the ORDER of this code? @nums.each_with_index do |a,i|! !
puts @nums.slice(i+1,N).reverse! .inspect! end O(N2)!
Leaky abstractions LEAKY ABSTRACTIONS
All Non-trivial abstractions are LEAKY to some degree
ABSTRACTIONS DO NOT really SIMPLIFY as they were meant to
Knowing THE ALGORITHMS Behind everyday methods PAYS OFF
Thanks :) Thanks :)