Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Look ma' I know my algorithms!
Search
Lucia Escanellas
October 24, 2014
Programming
7
470
Look ma' I know my algorithms!
RubyConf Argentina 2014
Lucia Escanellas
October 24, 2014
Tweet
Share
Other Decks in Programming
See All in Programming
Level up your Gemini CLI - D&D Style!
palladius
1
120
Feature Flags Suck! - KubeCon Atlanta 2025
phodgson
0
160
AI時代もSEOを頑張っている話
shirahama_x
0
170
Flutterチームから作る組織の越境文化
findy_eventslides
0
590
All(?) About Point Sets
hole
0
210
競馬で学ぶ機械学習の基本と実践 / Machine Learning with Horse Racing
shoheimitani
14
13k
手軽に積ん読を増やすには?/読みたい本と付き合うには?
o0h
PRO
1
110
connect-python: convenient protobuf RPC for Python
anuraaga
0
250
2025 컴포즈 마법사
jisungbin
0
150
Duke on CRaC with Jakarta EE
ivargrimstad
0
230
TVerのWeb内製化 - 開発スピードと品質を両立させるまでの道のり
techtver
PRO
3
1.2k
Atomics APIを知る / Understanding Atomics API
ssssota
1
210
Featured
See All Featured
How to Think Like a Performance Engineer
csswizardry
28
2.3k
YesSQL, Process and Tooling at Scale
rocio
174
15k
Making the Leap to Tech Lead
cromwellryan
135
9.6k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Testing 201, or: Great Expectations
jmmastey
46
7.8k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.6k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
52
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
192
62k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
Building an army of robots
kneath
306
46k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
GraphQLとの向き合い方2022年版
quramy
49
14k
Transcript
Look ma’, I know my algorithms!
Lucia Escanellas raviolicode
Attributions https://flic.kr/p/6DDvQP https://flic.kr/p/qv5Zp https://flic.kr/p/6SaZsP https://flic.kr/p/edauSN https://flic.kr/p/4uNfK8 https://flic.kr/p/o9ggdk https://flic.kr/p/6kfuHz https://flic.kr/p/5kBtbS
Speed Speed
Zen Elegance Elegance
Toolbox
Theory Theory
This example Not so common
FROM >30HS TO 18 S
WHY USE ORDERS? ALGORITHMS ARE POWERFUL AVOID TRAPS IN RUBY
WHY USE ORDERS? ALGORITHMS ARE POWERFUL AVOID TRAPS IN RUBY
WHY USING ORDERS? ALGORITHMS ARE POWERFUL AVOID TRAPS IN RUBY
Let’s have a look at the PROBLEM
Ordered array How many pairs (a,b) where a ≠ b
-100 <= a + b <= 100
Array: [-100, 1, 100]
Array: [-100, 1, 100] (-100, 1), (-100, 100), (1, 100)
Array: [-100, 1, 100] (-100, 1), (-100, 100), (1, 100)
-100 + 1 = 99 YES
Array: [-100, 1, 100] (-100, 1), (-100, 100), (1, 100)
-100 + 100 = 0 YES
Array: [-100, 1, 100] (-100, 1), (-100, 100), (1, 100)
1 + 100 = 101 NO
Array: [-100, 1, 100] (-100, 1), (-100, 100), (1, 100)
Result: 2
First solution Combinations of 2 elements Filter by: -100 <=
a + b <= 100
def count! combinations = @numbers.combination(2).to_a! ! combinations! .map{ |a,b| a
+ b }! .select do |sum|! sum.abs <= THRESHOLD! end.size! end
10K takes 10s BUT 100M takes 30hs
Time to buy a NEW LAPTOP!
Big O notation How WELL an algorithm SCALES as the
DATA involved INCREASES
Calc Array size (length=N) Count elements one by one: O(N)
Calc Array size (length=N) Count elements one by one: O(N)
Length stored in variable: O(1)
Graphical Math Properties Order Mathematical Properties
Remember: f < g => O(f + g) = O(g)
O(K . f) = O(f) O(1) < O(ln N) < O(N) < O(N2) < O(eN)
Ex: Binary Search Find 7 in [1, 2, 3, 4,
5, 6, 7, 8] 1. element in the middle is 5 2. 5 == 7 ? NO 3. 5 < 7 ? YES => Find 7 in [6, 7, 8] Step 1
! Find 7 in [0, 1, 2, 3, 4, 5,
6, 7, 8] 1. element in the middle is 7 2. 7 == 7 ? YES! FOUND IT!! Step 2
Ex: Binary Search Worst case: ceil ( Log2 N )
23 = 8 ONLY 3 steps
Typical examples Access to a Hash O(1) Binary search O(log
N) Sequential search O(N) Traverse a matrix NxN O(N2)
DON’T JUST BELIEVE ME fooplot.com
BUT raviolicode, I’m getting BORED
I WANT CONCURRENCY I WANT CONCURRENCY
wait… was it Concurrency? or Parallelism?
None
None
None
None
None
None
GIL+CPU-bound NO I/O OPERATIONS concurrency = OVERHEAD
NOT what I was expecting
Parallelism... Parallelism
None
What do we REALLY get? O(N2 / cores) = O(N
2 ) jRubyGo Scala
NO Spoilers O(N2) O(N.log(N)) O(N)
THINKING algorithms is as IMPORTANT as ANY OTHER technique
BYE.
Wait! It's still slow. Wait! It’s still SLOW
Given [1,2,3,4,5] Take 1, then print [5,4,3,2] Take 2, then
print [5,4,3] and so on…
What’s the ORDER of this code? @nums.each_with_index do |a,i|! !
puts @nums.slice(i+1,N).reverse! .inspect! end
What’s the ORDER of this code? @nums.each_with_index do |a,i|! !
puts @nums.slice(i+1,N).reverse! .inspect! end Looks like O(N)
What’s the ORDER of this code? @nums.each_with_index do |a,i|! !
puts @nums.slice(i+1,N).reverse! .inspect! end Behaves like O(N2)
Let’s Look at the DOCS Ruby-Doc.org ! #reverse
O(N) hidden! O(N)!
What’s the ORDER of this code? @nums.each_with_index do |a,i|! !
puts @nums.slice(i+1,N).reverse! .inspect! end O(N2)!
Leaky abstractions LEAKY ABSTRACTIONS
All Non-trivial abstractions are LEAKY to some degree
ABSTRACTIONS DO NOT really SIMPLIFY as they were meant to
Knowing THE ALGORITHMS Behind everyday methods PAYS OFF
Thanks :) Thanks :)