Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Look ma' I know my algorithms!
Search
Lucia Escanellas
October 24, 2014
Programming
7
460
Look ma' I know my algorithms!
RubyConf Argentina 2014
Lucia Escanellas
October 24, 2014
Tweet
Share
Other Decks in Programming
See All in Programming
アメ車でサンノゼを走ってきたよ!
s_shimotori
0
140
Model Pollution
hschwentner
1
180
Чего вы не знали о строках в Python – Василий Рябов, PythoNN
sobolevn
0
160
AIで開発生産性を上げる個人とチームの取り組み
taniigo
0
130
Let's Write a Train Tracking Algorithm
twocentstudios
0
230
CSC509 Lecture 06
javiergs
PRO
0
240
Le côté obscur des IA génératives
pascallemerrer
0
120
複雑化したリポジトリをなんとかした話 pipenvからuvによるモノレポ構成への移行
satoshi256kbyte
1
780
SpecKitでどこまでできる? コストはどれくらい?
leveragestech
0
530
あなたの知らない「動画広告」の世界 - iOSDC Japan 2025
ukitaka
0
390
私達はmodernize packageに夢を見るか feat. go/analysis, go/ast / Go Conference 2025
kaorumuta
2
490
Go言語の特性を活かした公式MCP SDKの設計
hond0413
1
180
Featured
See All Featured
YesSQL, Process and Tooling at Scale
rocio
173
14k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
For a Future-Friendly Web
brad_frost
180
9.9k
Site-Speed That Sticks
csswizardry
11
880
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.7k
The Straight Up "How To Draw Better" Workshop
denniskardys
237
140k
4 Signs Your Business is Dying
shpigford
185
22k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
960
Navigating Team Friction
lara
189
15k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.4k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
Transcript
Look ma’, I know my algorithms!
Lucia Escanellas raviolicode
Attributions https://flic.kr/p/6DDvQP https://flic.kr/p/qv5Zp https://flic.kr/p/6SaZsP https://flic.kr/p/edauSN https://flic.kr/p/4uNfK8 https://flic.kr/p/o9ggdk https://flic.kr/p/6kfuHz https://flic.kr/p/5kBtbS
Speed Speed
Zen Elegance Elegance
Toolbox
Theory Theory
This example Not so common
FROM >30HS TO 18 S
WHY USE ORDERS? ALGORITHMS ARE POWERFUL AVOID TRAPS IN RUBY
WHY USE ORDERS? ALGORITHMS ARE POWERFUL AVOID TRAPS IN RUBY
WHY USING ORDERS? ALGORITHMS ARE POWERFUL AVOID TRAPS IN RUBY
Let’s have a look at the PROBLEM
Ordered array How many pairs (a,b) where a ≠ b
-100 <= a + b <= 100
Array: [-100, 1, 100]
Array: [-100, 1, 100] (-100, 1), (-100, 100), (1, 100)
Array: [-100, 1, 100] (-100, 1), (-100, 100), (1, 100)
-100 + 1 = 99 YES
Array: [-100, 1, 100] (-100, 1), (-100, 100), (1, 100)
-100 + 100 = 0 YES
Array: [-100, 1, 100] (-100, 1), (-100, 100), (1, 100)
1 + 100 = 101 NO
Array: [-100, 1, 100] (-100, 1), (-100, 100), (1, 100)
Result: 2
First solution Combinations of 2 elements Filter by: -100 <=
a + b <= 100
def count! combinations = @numbers.combination(2).to_a! ! combinations! .map{ |a,b| a
+ b }! .select do |sum|! sum.abs <= THRESHOLD! end.size! end
10K takes 10s BUT 100M takes 30hs
Time to buy a NEW LAPTOP!
Big O notation How WELL an algorithm SCALES as the
DATA involved INCREASES
Calc Array size (length=N) Count elements one by one: O(N)
Calc Array size (length=N) Count elements one by one: O(N)
Length stored in variable: O(1)
Graphical Math Properties Order Mathematical Properties
Remember: f < g => O(f + g) = O(g)
O(K . f) = O(f) O(1) < O(ln N) < O(N) < O(N2) < O(eN)
Ex: Binary Search Find 7 in [1, 2, 3, 4,
5, 6, 7, 8] 1. element in the middle is 5 2. 5 == 7 ? NO 3. 5 < 7 ? YES => Find 7 in [6, 7, 8] Step 1
! Find 7 in [0, 1, 2, 3, 4, 5,
6, 7, 8] 1. element in the middle is 7 2. 7 == 7 ? YES! FOUND IT!! Step 2
Ex: Binary Search Worst case: ceil ( Log2 N )
23 = 8 ONLY 3 steps
Typical examples Access to a Hash O(1) Binary search O(log
N) Sequential search O(N) Traverse a matrix NxN O(N2)
DON’T JUST BELIEVE ME fooplot.com
BUT raviolicode, I’m getting BORED
I WANT CONCURRENCY I WANT CONCURRENCY
wait… was it Concurrency? or Parallelism?
None
None
None
None
None
None
GIL+CPU-bound NO I/O OPERATIONS concurrency = OVERHEAD
NOT what I was expecting
Parallelism... Parallelism
None
What do we REALLY get? O(N2 / cores) = O(N
2 ) jRubyGo Scala
NO Spoilers O(N2) O(N.log(N)) O(N)
THINKING algorithms is as IMPORTANT as ANY OTHER technique
BYE.
Wait! It's still slow. Wait! It’s still SLOW
Given [1,2,3,4,5] Take 1, then print [5,4,3,2] Take 2, then
print [5,4,3] and so on…
What’s the ORDER of this code? @nums.each_with_index do |a,i|! !
puts @nums.slice(i+1,N).reverse! .inspect! end
What’s the ORDER of this code? @nums.each_with_index do |a,i|! !
puts @nums.slice(i+1,N).reverse! .inspect! end Looks like O(N)
What’s the ORDER of this code? @nums.each_with_index do |a,i|! !
puts @nums.slice(i+1,N).reverse! .inspect! end Behaves like O(N2)
Let’s Look at the DOCS Ruby-Doc.org ! #reverse
O(N) hidden! O(N)!
What’s the ORDER of this code? @nums.each_with_index do |a,i|! !
puts @nums.slice(i+1,N).reverse! .inspect! end O(N2)!
Leaky abstractions LEAKY ABSTRACTIONS
All Non-trivial abstractions are LEAKY to some degree
ABSTRACTIONS DO NOT really SIMPLIFY as they were meant to
Knowing THE ALGORITHMS Behind everyday methods PAYS OFF
Thanks :) Thanks :)