Upgrade to Pro — share decks privately, control downloads, hide ads and more …

自律システムの運用を実践する環境 “AS DOJO” の設計

自律システムの運用を実践する環境 “AS DOJO” の設計

とある組織がより複雑なネットワーク利活用を実現しようとすると、その組織がグローバルな自律システム番号 (Autonomous System Number:ASN) を取得しBGP-4に代表されるゲートウェイ外経路制御プロトコル (Exterior Gateway Protocol: EGP) を運用する必要がある。たとえば学術情報ネットワークSINETにおいてBGPサービスを利用する場合「加入機関側に十分な運用経験をもった技術者が必要」「導入の際は慎重にご検討ください」とあるように、EGPの運用有識者が必要である。一方で経年とともにEGPの運用経験者は退役していき、インターネットサービスプロバイダなどでEGPの運用を経験したものが研究組織に所属するようになることは稀である。そこで著者らは将来的なネットワーク高度活用に資するネットワーク運用技術者を育成することを目的とし、実践的かつ実際的なEGP演習テストベッド“AS-DOJO”の設計・実装および運用を行う。SINET6のL2VPN/VPLSを利用する広域分散プラットフォームDistcloudの上で物理ルータやソフトウェアルータを設置し、相互接続することにより各拠点はEGPを実際に利用することができる。本稿でこの取り組みを発表することで、より多くの参加者を募り、規模の拡大を目指す。

More Decks by Hiroki (REO) Kashiwazaki

Transcript

  1. ͸͡Ίʹਆ +PIO1PTUFM ͸*1ΞυϨεͱܦ࿏੍ޚද ͱΛ૑଄͞Εͨɻ ܦ࿏੍ޚද͸ܗͳ͘ɺΉͳ͘͠ɺ΍Έ͕෵ͷ͓΋ͯʹ ͋Γɺਆͷྶ͕ਫͷ͓΋ͯΛ͓͓͍ͬͯͨɻ ਆ +)BXLJOTPO 5#BUFT ͸ʮ"4͋Εʯͱݴ͍Θ

    Εͨ 3'$ ɻ͢Δͱ"4͕͋ͬͨ  ɻ ਆ͸ͦͷ"4Λݟͯɺྑ͠ͱ͞Εͨɻਆ͸ͦͷ"4ͱҋ ͱΛ෼͚ΒΕͨɻ ϙεςϧ ૑ੈه תישארב
  2. యܕతφʔυͷਐԽܗଶ The evolutionary form of a typical computer nerd Πϯλʔωοτ

    ͱͷॳ઀৮͔Β *1ΞυϨεΛ஌Γ ΠΩΓࢄΒ͔͢ ༮೥ظ δϡϒφΠϧ ੨೥ظ ऴ຤ظ ݻఆ*1ΞυϨε ΁ͷڧ͍ಌጦ *1W΁ͷ໨֮Ί ࣗ୐αʔόͷ࣮ݱ ҳൠͷޡՈఉͷ ωοτϫʔΫ΁ ݸਓ"4 ӡ༻ ௒͑ΒΕͳ͍น
  3. ,ZVTIV4BOHZP 6OJW ,ZVTIV4BOHZP 6OJW ,ZVTIV*OTUJUVUFPG 5FDIOPMPHZ ,ZVTIV*OTUJUVUFPG 5FDIOPMPHZ ,ZVTIV 6OJW

    ,ZVTIV 6OJW 3ZVLZV 6OJW 3ZVLZV 6OJW ,65 ,PDIJ6OJWFSTJUZ PGUFDIOPMPHZ ,65 ,PDIJ6OJWFSTJUZ PGUFDIOPMPHZ /** /BUJPOBM*OTUJUVUF PG*OGPSNBUJDT /** /BUJPOBM*OTUJUVUF PG*OGPSNBUJDT NEY NEY /"*45 /BSBJOTUJUVUFPG TDJFODFBOEUFDIOPMPHZ /"*45 /BSBJOTUJUVUFPG TDJFODFBOEUFDIOPMPHZ +"*45 +BQBO"EWBODFE*OTUJUVUF PGTDJFODFBOE5FDIOPMPHZ +"*45 +BQBO"EWBODFE*OTUJUVUF PGTDJFODFBOE5FDIOPMPHZ )JSPTIJNB 6OJW )JSPTIJNB 6OJW ,BOB[BXB 6OJW ,BOB[BXB 6OJW ,ZPUP 6OJW ,ZPUP 6OJW 0TBLB 6OJW 0TBLB 6OJW 5PIPLV 6OJW 5PIPLV 6OJW 5*5&$) 5PLZP*OTUJUVUF PGUFDIOPMPHZ 5*5&$) 5PLZP*OTUJUVUF PGUFDIOPMPHZ )PLLBJEP 6OJW )PLLBJEP 6OJW 4*/&5 4BQQPSP%$ 4*/&5 4BQQPSP%$ (VONB6OJW (VONB6OJW ,JOEBJ ,JOEBJ 4*/&5 'VLVPLB%$ 4*/&5 'VLVPLB%$ ,*5 ,JUBNJ*OTUJUVUF PGUFDIOPMPHZ ,*5 ,JUBNJ*OTUJUVUF PGUFDIOPMPHZ 6$4% 6OJWFSTJUZPG$BMJGPSOJB 4BO%JFHP 6$4% 6OJWFSTJUZPG$BMJGPSOJB 4BO%JFHP ޿Ҭ෼ࢄϓϥοτϑΥʔϜ %JTUDMPVE 4JODF
  4. $PNQVUJOHOPEF &EHFTXJUDI $BNQVTTXJUDI 3ZVLZV $PNQVUJOHOPEF &EHFTXJUDI $BNQVTTXJUDI $PNQVUJOHOPEF &EHFTXJUDI $BNQVTTXJUDI

    $PNQVUJOHOPEF &EHFTXJUDI $BNQVTTXJUDI ,46 )BOEBJ 3*&$    CS 7-"/*% CS 7-"/*% CS 7-"/*% CS 7-"/*% CS 7-"/*% CS 7-"/*% CS 7-"/*% CS 7-"/*% CS 7-"/*% CS 7-"/*% CS 7-"/*%
  5. VLAN A153 VLAN B153 VPLS site A site B VLAN

    A153.AB QinQ VLAN B153.AB QinQ VLAN A156d MPDBM VLAN B156d MPDBM Distcloud ver.3
  6. 1IZTJDBM.BDIJOFT %JTUDMPVEDPSF 7JSUVBM3PVUFS -71/71-4 2JO2 *&&&R "4 "4 "4 "4

    "4 "4 1SJWBUF"4 (MPCBM"4 4*/&5 1BSUJDJQBUJOH 0SHBOJ[BUJPO 1IZTJDBM 3PVUFS "4 "4 "4 "4 "4 "4 "4 ෼ࢄඇதԝूݖࢦ޲"4ӡ༻ςετϕου "4%0+0 "VUPOPNPVT4ZTUFN%JTUSJCVUFE %FDFOUSBMJ[FE 0SJFOUFE+PJOU0QFSBUJPO 
  7. VLAN A153 VLAN B153 VPLS site A site B VLAN

    A153.AB QinQ VLAN B153.AB QinQ VLAN A156d MPDBM VLAN B156d MPDBM Using 31-Bit Prefixes on IPv4 Point-to-Point Links RFC3021 IEEE802.1q QinQ
  8. ෼ࢄඇதԝूݖࢦ޲"4ӡ༻ςετϕου "4%0+0 "VUPOPNPVT4ZTUFN%JTUSJCVUFE %FDFOUSBMJ[FE 0SJFOUFE+PJOU0QFSBUJPO  େࡕڭҭେ ௗऔେֶ ޿ౡେֶ ܈അେֶ

    0TBLB,ZPJLV6OJWFSTJUZ 5PUUPSJ6OJWFSTJUZ )JSPTIJNB6OJWFSTJUZ (VONB6OJWFSTJUZ ,JOEBJ6OJWFSTJUZ େࡕେֶ 6OJWFSTJUZPG0TBLB ౦ژՊֶେֶ 4DJFODF5PLZP ژ౎େֶ גࣜձࣾ -PDBM ,ZPUP6OJWFSTJUZ -PDBM*OD ,ZPUP8PNFO` T6OJWFSTJUZ ژ౎ঁࢠେֶ ,ZPUP4OBHZP6OJWFSTJUZ ژ౎࢈ۀେֶ ෱Ԭঁࢠେֶ 'VLVPLB8PNFO` T6OJWFSTJUZ ۝भ࢈ۀେֶ ,ZVTIV4BOHZP6OJWFSTJUZ ௕࡚ݝཱେֶ 6OJWFSTJUZPG/BHBTBLJ ۙـେֶ
  9. ւ֎Ͱͷಈ޲ ⿣ l1&&3*/(z "$.$P`/&95  Ծ૝Խ#(1࣮ݧج൫ʮ1&&3*/(ʯɻ୯Ұͷ#(1Τοδ ϧʔλΛෳ਺ͷ࣮ݧʹ҆શʹڞ༗͢Δ࢓૊ΈʮW#(1ʯɻ ෺ཧ"4ͱಉ౳ͷ੍ޚݖݶΛఏڙ͢Δɻطʹڌ఺ʹల։ ͞ΕɺҎ্ͷωοτϫʔΫͱ઀ଓ͓ͯ͠ΓɺҎ্ ͷֶज़࿦จͰͷݚڀͷج൫ͱͯ͠ར༻͞Ε͍ͯΔɻ

    Brandon Schlinker, Todd Arnold, Italo Cunha, and Ethan Katz-Bassett. 2019. PEERING: virtualizing BGP at the edge for research. In Proceedings of the 15th International Conference on Emerging Networking Experiments And Technologies (CoNEXT '19). Association for Computing Machinery, New York, NY, USA, 51–67. https://doi.org/10.1145/3359989.3365414
  10. PEERING: Virtualizing BGP at the Edge for Research Brandon Schlinker†

    Todd Arnold‡ Italo Cunha𝐿‡ Ethan Katz-Bassett‡ † University of Southern California ‡ Columbia University 𝐿 Universidade Federal de Minas Gerais ABSTRACT Internet routing research has long been hindered by obstacles to executing the wide class of experiments necessary to characterize problems and opportunities, and evaluate candidate solutions. Prior works proposed a platform that would provide experiments with control of an Internet-connected AS. However, because BGP does not natively support multiplexing or the requisite security policies for building such a platform, prior works were ultimately unable to realize this vision. We present P!!"#$%, a community platform that provides multiple parallel experiments with control and visibility equivalent to directly operating a production AS. P!!"#$% is built atop vBGP, our design for virtualizing the data and control planes of a BGP edge router while simultaneously enforcing security policies to prevent experiments from disrupting the Internet and each other. With P!!"#$%, experiments operate in an environment qualitatively similar to that of a cloud provider, and can exchange routes and tra!c with hundreds of neighboring networks and the broader Internet at locations around the world. To date, P!!"#$%’s rich connectivity and "exibility have enabled it to support over 40 experiments and 15 publications in key research areas such as security, tra!c engineering, and routing policies. CCS CONCEPTS [12, 43, 44]. The growth in connectivity is seen as an opportu- nity to improve performance, but the improvements come at a cost: increased complexity of network con#guration and tra!c engineering, accompanied by increased security risks [87]. Due to the shortcomings of the Border Gateway Protocol (BGP), the protocol responsible for inter-Autonomous System (AS) communi- cation, content and cloud providers build sophisticated, customized controllers and measurement systems to handle the additional com- plexity [80, 81, 100, 104]. Researchers and network operators are well aware of BGP’s limitations and their impact on performance [44, 47, 60, 81, 101], availability [54, 66, 104], and security [69, 87], but progress to- wards overcoming these challenges is slow. A signi#cant barrier to exploring solutions is that BGP does not lend itself well to support- ing experimentation. Emulation and simulation cannot accurately model the Internet due to the lack of transparency in BGP and the proprietary nature of routing policies [28, 53, 54, 59, 86]. Existing tools that provide visibility into the current state of BGP [42, 73, 76] or perform measurements [27, 62, 67, 72] cannot interact with the routing ecosystem, so they can only provide limited insight into the current policies and connectivity of an AS [13, 49]. To gain better insight into how solutions will perform, experi- ments need to interact with and a$ect the Internet’s routing ecosys- tem. Interacting with the actual routing ecosystem would require researchers to take control of a real production AS and its resources: Brandon Schlinker, Todd Arnold, Italo Cunha, and Ethan Katz-Bassett. 2019. PEERING: virtualizing BGP at the edge for research. In Proceedings of the 15th International Conference on Emerging Networking Experiments And Technologies (CoNEXT '19). Association for Computing Machinery, New York, NY, USA, 51–67. https://doi.org/10.1145/3359989.3365414
  11. ઀ଓ༧ఆػث ⿣ "MBYBMB͝ఏڙͷ ݹ͍ ػث ⿣ 7Z04 ⿣ 2VBHHB ⿣

    '33PVUJOH ⿣ $JTDP93%SPVUFS ⿣ TEQMBOFXJSFUBQ AIOPCWA (intel N100, SFP+x2) Partaker C4 (Celeron J3160)