Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Développement de la micro-spectrométrie et transfert vers l'industrie

0f828d1e52998fda294448484de2e409?s=47 @Résif
July 05, 2017

Développement de la micro-spectrométrie et transfert vers l'industrie

Présentation d'Etienne Le Coarer (UGA) au Workshop "Instrumentation Géophysique" | 3-5 juillet 2017, Brissac

0f828d1e52998fda294448484de2e409?s=128

@Résif

July 05, 2017
Tweet

Transcript

  1. Développements de la microspectrométrie et transfert vers l’industrie E. Le

    Coarer RESIF
  2. Grenoble, a Space City in the Alps

  3. NanoCarb-drone silvere.gousset@univ-grenoble- 3 Interference plane 633nm Telescope 50mm Field mask

    6x6mm2 L col D=30mm F=75mm µL Pitch=0.3mm F=4mm CMOS Hdpix 2808x1096 Integration of 1 on-drone hyperspectral sensor based on NanoCarb/ATISE hybrid concept  Study of vegetation [Laurent Borgniet (IRSTEA), Laurence Audin (ISTERRE)]  14 spectral channels between 400nm and 1000nm  30x30 pixels of field  6m-swath at an altitude of 50m, and with a spatial resolution of 20cm Focal plane
  4. Cubesat 1U (1 kg, 1 W, 1 L) 10 cm

    10 cm NanoCarb 6U The NanoCarb Mission Unit 1 Unit 2 Unit 3 …  Sun-synchronous orbit  Constant local time 11:30 am  Altitude: 594 km  21 x 5min time-spaced units A constellation of 21 cubesats to complete the MicroCarb mission with daily resolved data  Implementation of a SPOC imaging spectrometer, swath=150km  Multiplication of the satellites on the orbit (x10-21)  Resolution: 3km  Sensitivity: goal 1 ppm of CO 2 ; 32ppb of CH 4 Land coverage Nadir mod Ocean coverage Glint mod [MicroCarb] Need a drastically miniaturized payload 10-100kg => 1-10kg Design a SPOC-based imaging-FTS Performance demonstration 10/08/2017 4
  5. SPOC-based spectro-imager design Side view (not to scale) Front view

    4x optically independent spectral bands 4x spectral bands over one single detector … or 1 detector/band Payload: 150x40x40 mm3 Estimated consumption ~10W, FPA: 1W Integration in a 6U-12U platform (<10kg for 6U) Implementation example in a 6U plateform [ISIS] 10/08/2017 silvere.gousset@univ-grenoble- 5
  6. VIPA : high spectral resolution echelle spectrometer

  7. 7 Applications Photonics Aeronautics Structure Health Monitoring Bio-pharma L a

    s e r S p e c t r u m A n a l y z e r W a v e l e n g t h M e t e r B r a g g I n t e r r o g a t o r R a m a n A n a l y z e r Laser characterization Process analytics Structure monitoring ProCellics™
  8. 8 Products for laser analysis ZOOM Spectra 630-1100 nm Ultra-high

    spectral resolution (2 GHz) High-rate (30 kHz) High absolute accuracy (600 MHz) Trig available GigaEthernet MICRO Spectra 630-1100 nm Ultra-high spectral resolution Compact USB2.0 WIDE Spectra 630-1100 nm Ultra-high spectral resolution Wide measurement windows (100 nm) USB2.0 OEM-MICRO Spectra 630-1100 nm Ultra-high spectral resolution Ultra compact USB2.0 To be embedded LW-10 Wavelength Meter 20 MHz resolution 200 MHz absolute accuracy For pulsed and CW lasers User-friendly software Compact size For single frequency lasers only Tunable laser control Laser stability control Frequency locking Key features Applications
  9. GeoSWIFTS: a nano strainmeter using optical fiber / Bragg gratings

    and an optically integrated spectrometer O. Coutant, ISTerre, UGA E. Le Coarer, IPAG, UGA F. Thomas, Resolution Spectra M. De Mengin, SITES Sas e
  10. GEOSWIFTS Objectives • Take opportunity of SWIFTS spectrometer characteristics to

    develop a field and borehole strain sensor using Bragg Gratings on optical fiber • Such sensors are extremely usefull to records transient signals: – Precursors to earthquake – Precursors to eruption – Transient « long term » deformation (Slow Slip Event) – – They need to resolve down to 1.e-9 strain • • Optical fibers are a good candidate for borehole
  11. Example 1: Eruption Soufriere Hill, Montserrat, 2003, Voight et al.,

    2010, GRL Strain Signal associated with pyroclastic eruption recorded by a mechanical Sacks-Evertson borehole sensor Deformation: Volcanology
  12. Slow earthquakes triggered by typhoons, Liu, Linde & Sacks, Nature,

    2009 Strainmeter at Taiwan above the subduction zone Deformation: slow slip event subduction zone
  13. Principle of operation for Bragg gratings optical fiber strain measurement

    A Bragg grating inside the optical fiber (periodic variation of light index) acts as a mirror for a given wavelength l depending on the periodicity Light source Light source l shif Measurement using spectrometer l shif Measurement using spectrometer
  14. Pierre Kern / ICSO 5 October 2010 SWIFTS-Lippmann Principle Wave-guide

    core Wave-guide Substrate Nano-detectors in evanescent field Stationary wave Lippmann Interferogram Monochromatic light case White light case Wave-guide core Wave-guide Substrate Nano-detectors in evanescent field Light entrance Mirror 4 m Light entrance
  15. Pierre Kern / ICSO 5 October 2010 SWIFTS-Lippmann Principle Wave-guide

    core Wave-guide Substrate Nano-detectors in evanescent field Stationary wave Lippmann Interferogram Monochromatic light case White light case Wave-guide core Wave-guide Substrate Nano-detectors in evanescent field Light entrance Mirror 4 m Light entrance Interference fringes
  16. SPIE – Photonics West – Paper 8992-16 - Photonic Instrumentation

    Engineering – 3th February 2014 Implementation of the technology  Hybridization on camera  Precise alignment and bonding of the “optical” chip on a detector die (2048 pixels high-rate linear CCD detector)  Fiber connectorization to the singlemode waveguide  Assembly with electronics and mechanical package  High-resolution high-rate mini-spectrometer without any moving parts = the ZOOM Spectra spectrometer
  17. Coutant, O.; De Mengin, M. & Le Coarer, E. Fabry--Perot

    optical fiber strainmeter with an embeddable, low-power interrogation system Optica, Optical Society of America, 2015, 2, 400-404
  18. The optical fiber deformation is proportional to the interference fringe

    displacement
  19. Experiments at Rustrel LSBB underground facility • 1st design: Fabry-Pérot

    ~2cm vertical sensor • 2nd design: Michelson 20m horizontal sensor
  20. Fabry-Pérot vertical 2cm strainmeter

  21. Earth tide recording

  22. 0 500 1000 1500 2000 2500 3000 3500 −100 −80

    −60 −40 −20 0 20 40 60 80 sec nanostrain Strain estimated from seismometers network 0 500 1000 1500 2000 2500 3000 3500 −80 −60 −40 −20 0 20 40 60 80 sec nanostrain Strain measured from geoswifts above 25e−9 strain noise level below 25e−9 strain noise level Chile Mag 7.8 earthquake recording
  23. 2cm Fabry-Pérot noise level

  24. Michelson 20m horizontal sensor

  25. Fox Island Mag 6.9 earthquake recording

  26. Fox earthquake: Amplitude and phase matching

  27. 20m Michelson noise level

  28. 20m Michelson noise level Noise ?

  29. 20m Michelson noise level Noise ? The 20m Michelson is

    unable to detect the earth tide
  30. 0 2000 4000 6000 8000 10000 12000 14000 16000 964

    964.5 965 965.5 966 966.5 967 pressure 0 2000 4000 6000 8000 10000 12000 14000 16000 −1.5 −1 −0.5 0 x 10−6 deformation Coupling between pressure and deformation may shadow earth tide signal
  31. 13.5 14 14.5 15 15.5 16 −1 −0.5 0 0.5

    1 1.5 x 10−8 hours strain Mariana Mag 7.7 deep earthquake (29−07−16) noise rms: 0.4e−9
  32. Perspectives Realization of borehole mono or multiaxial optical fiber sensor

    using EBM technology (3D titanium impression): Path indicator Fiber Path guide Up to 6 axes Clamping screw threading Prototype using 3D plastic impression Titane 3D printed Porous sample
  33. Conclusion • Demonstration of small efficient FP fully integrated sensors

     Development of borehole instrumentation • Very sensitive sub- nano Michelson instrumentation – Difficulties to interpret signals but very promizing e