Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
VAE
Search
Atom
February 21, 2019
0
170
VAE
2020/3/15: youtubeのコメントによるご指摘を頂き,6ページの図を差し替えました
Atom
February 21, 2019
Tweet
Share
More Decks by Atom
See All by Atom
文献紹介 / Structure-based Knowledge Tracing: An Influence Propagation View
roraidolaurent
0
99
文献紹介 / Knowledge Tracing with GNN
roraidolaurent
0
100
文献紹介 / Non-Intrusive Parametric Reduced Order Models withHigh-Dimensional Inputs via Gradient-Free Active Subspace
roraidolaurent
0
60
ニューラルネットワークのベイズ推論 / Bayesian inference of neural networks
roraidolaurent
2
2.8k
Graph Convolutional Networks
roraidolaurent
0
240
文献紹介 / A Probabilistic Annotation Model for Crowdsourcing Coreference
roraidolaurent
0
76
文献紹介Deep Temporal-Recurrent-Replicated-Softmax for Topical Trends over Time
roraidolaurent
0
120
文献紹介/ Bayesian Learning for Neural Dependency Parsing
roraidolaurent
0
120
ポッキー数列の加法定理 / Pocky number additon theorem
roraidolaurent
0
230
Featured
See All Featured
Evolving SEO for Evolving Search Engines
ryanjones
0
120
Mind Mapping
helmedeiros
PRO
0
77
Building Experiences: Design Systems, User Experience, and Full Site Editing
marktimemedia
0
400
Collaborative Software Design: How to facilitate domain modelling decisions
baasie
0
130
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
120
Beyond borders and beyond the search box: How to win the global "messy middle" with AI-driven SEO
davidcarrasco
1
49
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.6k
Building a A Zero-Code AI SEO Workflow
portentint
PRO
0
300
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
AI Search: Where Are We & What Can We Do About It?
aleyda
0
6.9k
Statistics for Hackers
jakevdp
799
230k
Java REST API Framework Comparison - PWX 2021
mraible
34
9.1k
Transcript
AEとVAE 変分オートエンコーダーとは 第7回 B3勉強会 2019/2/21 長岡技術科学大学 自然言語処理研究室 吉澤 亜斗武
参考文献・資料 [1] IIBMP2016:深層生成モデルによる表現学習 https://www.slideshare.net/pfi/iibmp2016-okanohara-deep-generative-models-for-representation- learning [2] @kenchin110100:AutoEncoder, VAE, CVAEの比較 〜なぜVAEは
連続的な画像を生成できるのか?〜 https://qiita.com/kenchin110100/items/7ceb5b8e8b21c551d69a [3] 渡辺澄夫:オートエンコーダー http://watanabe- www.math.dis.titech.ac.jp/users/swatanab/Renshu_3.pdf 2
(1) VAEとは ・Auto-encoder 教師なし学習の一つ 識別モデル(Discriminative model)のニューラルネット 入力を受けて出力が決定論的に決まる 非線形の次元圧縮が可能(線形は主成分解析) 3
引用:[3] 4
(1) VAEとは ・Variational Auto-encoder 教師なし学習の一つ 生成モデル(Generrative model)のニューラルネット 入力を受けて出力が確率的に決まる ELBOを最大化 5
引用[1]
(1) VAEとは 6 引用[2]
(1) VAEとは 引用[1] 7