Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
VAE
Search
Atom
February 21, 2019
0
160
VAE
2020/3/15: youtubeのコメントによるご指摘を頂き,6ページの図を差し替えました
Atom
February 21, 2019
Tweet
Share
More Decks by Atom
See All by Atom
文献紹介 / Structure-based Knowledge Tracing: An Influence Propagation View
roraidolaurent
0
88
文献紹介 / Knowledge Tracing with GNN
roraidolaurent
0
92
文献紹介 / Non-Intrusive Parametric Reduced Order Models withHigh-Dimensional Inputs via Gradient-Free Active Subspace
roraidolaurent
0
55
ニューラルネットワークのベイズ推論 / Bayesian inference of neural networks
roraidolaurent
1
2.8k
Graph Convolutional Networks
roraidolaurent
0
230
文献紹介 / A Probabilistic Annotation Model for Crowdsourcing Coreference
roraidolaurent
0
67
文献紹介Deep Temporal-Recurrent-Replicated-Softmax for Topical Trends over Time
roraidolaurent
0
99
文献紹介/ Bayesian Learning for Neural Dependency Parsing
roraidolaurent
0
120
ポッキー数列の加法定理 / Pocky number additon theorem
roraidolaurent
0
210
Featured
See All Featured
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
138
34k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.8k
Rails Girls Zürich Keynote
gr2m
94
14k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Why Our Code Smells
bkeepers
PRO
337
57k
Navigating Team Friction
lara
187
15k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Side Projects
sachag
455
42k
How to Think Like a Performance Engineer
csswizardry
24
1.7k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Designing for Performance
lara
609
69k
Transcript
AEとVAE 変分オートエンコーダーとは 第7回 B3勉強会 2019/2/21 長岡技術科学大学 自然言語処理研究室 吉澤 亜斗武
参考文献・資料 [1] IIBMP2016:深層生成モデルによる表現学習 https://www.slideshare.net/pfi/iibmp2016-okanohara-deep-generative-models-for-representation- learning [2] @kenchin110100:AutoEncoder, VAE, CVAEの比較 〜なぜVAEは
連続的な画像を生成できるのか?〜 https://qiita.com/kenchin110100/items/7ceb5b8e8b21c551d69a [3] 渡辺澄夫:オートエンコーダー http://watanabe- www.math.dis.titech.ac.jp/users/swatanab/Renshu_3.pdf 2
(1) VAEとは ・Auto-encoder 教師なし学習の一つ 識別モデル(Discriminative model)のニューラルネット 入力を受けて出力が決定論的に決まる 非線形の次元圧縮が可能(線形は主成分解析) 3
引用:[3] 4
(1) VAEとは ・Variational Auto-encoder 教師なし学習の一つ 生成モデル(Generrative model)のニューラルネット 入力を受けて出力が確率的に決まる ELBOを最大化 5
引用[1]
(1) VAEとは 6 引用[2]
(1) VAEとは 引用[1] 7