Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Adilson Chinatto

Adilson Chinatto

(University of Campinas, BR and ENS Cachan, FR)

https://s3-seminar.github.io/seminars/adilson-chinatto

Title — L0 optimization for DOA and channel sparse estimation

Abstract — Adilson Chinatto received a degree in Electrical Engineering in 1997 and Masters in 2011, both from the University of Campinas (Unicamp), Brazil. He worked as hardware, software and firmware development engineer for optical transmission equipment in the companies AsGa and CPqD in Brazil. He is a co-founder of Espectro Ltd., a Brazilian design house for hardware and software, focused in signal processing. Nowadays he is coordinator of a High Performance GPS Receiver Project at Espectro Ltd. funded by the Brazilian National Counsel of Technological and Scientific Development (CNPq). He has experience in electrical engineering with emphasis on telecommunication systems, digital signal processing and smart antennas, working mainly with development and implementation of programmable logic devices (FPGA). He is currently finishing his Ph.D. at Unicamp, working with sparse and compressive sensing signal processing.

S³ Seminar

March 06, 2015
Tweet

More Decks by S³ Seminar

Other Decks in Research

Transcript

  1. l
    0
    -Optimization for DoA and
    Channel Sparse Estimation
    Adilson Chinatto
    SUPELEC
    Mars, 6th 2015

    View Slide

  2. View Slide

  3. Summary
    → l
    p
    -norm and other definitions
    → Problem formulation
    → l
    2
    -l
    1
    solvers
    → examples on channel estimation
    → l
    2
    -l
    0
    solvers
    → examples on channel estimation
    → examples on DoA estimation
    → Conclusions and future work

    View Slide

  4. Some Definitions
    Problem to be solved:
    l
    p
    =∥x∥
    p
    :=(∑
    i
    ∣x
    i
    ∣p
    )1/ p
    , p>0
    y=A x+n
    l
    0
    =∥x∥
    0
    :=# of non-null elements in x
    x=[0 1 0 -2 0 5 0 0 -3]T
    ∥x∥
    0
    =4
    or
    Y=A X+N
    vector problem
    matrix problem
    p-norm of x is defined as:
    Special case: p = 0
    E. g.:

    View Slide

  5. l
    2
    Solution of Overdetermined Problem
    Assumptions:
    1. y and A are known
    2. A[MxN]
    is overdetermined (M ≥ N)
    In such case, one possible solution is:
    min
    ̂
    x
    {f (̂
    x)=∥y A ̂
    x∥
    2
    2}
    y=A x+n
    ̂
    x=A†
    y
    least squares solution
    closed form

    View Slide

  6. l
    2
    Solutions of Underdetermined Problem
    Assumptions:
    1. y and A are known
    2. A[MxN]
    is underdetermined (M < N)
    In such case, least squares solutions fails:
    min
    ̂
    x
    {f (̂
    x)=∥y A ̂
    x∥
    2
    2}
    y=A x+n
    less equations
    than unknows
    3. Vector x is SPARSE
    How to use the sparsity of x in order to achieve a good solution?
    there are more null (or near-null)
    elements than non-null elements is x

    View Slide

  7. l
    2
    –l
    0
    Solutions of Underdetermined Problem
    The best solution considering x sparse is given by:
    2. If maximum noise n is known:
    3. If nor sparsity nor noise are known:
    1. If maximum sparsity k is known:
    These problems
    are known to be
    NP-Hard!
    Assumptions:
    min
    ̂
    x
    f ( ̂
    x)=∥y A ̂
    x∥
    2
    2 subject to min g( ̂
    x)=min∥̂
    x∥
    0
    min
    ̂
    x
    ∥y A ̂
    x∥
    2
    2 s. t. ∥̂
    x∥
    0
    ⩽k
    min
    ̂
    x
    ∥̂
    x∥
    0
    s. t. ∥y A ̂
    x∥
    2
    2⩽n
    min
    ̂
    x
    {1
    2
    ∥y A ̂
    x∥
    2
    2+λ∥̂
    x∥
    0
    }

    View Slide

  8. l
    2
    –l
    1
    Solutions of Underdetermined Problem
    Relaxation: in some cases, l
    0
    -norm can be relaxed
    l
    0



    → l
    1
    1. Noiseless case:
    Mixture matrix A
    must obey some
    restrictions:
    RIP
    Assumptions:
    min
    ̂
    x
    ∥̂
    x∥
    1
    s. t. A ̂
    x= y
    Compressive
    Sensing
    Framework
    Allows solution by
    Convex Optimization
    techniques
    2. Noisy case:
    min
    ̂
    x
    {1
    2
    ∥y A ̂
    x∥
    2
    2+λ∥̂
    x∥
    1
    } Restricted
    Isometry
    Property

    View Slide

  9. l
    2
    –l
    1
    Algorithms
    1. Basis Pursuit (BP)
    → Noiseless case:
    convex function
    min
    ̂
    x
    ∥̂
    x∥
    1
    s. t. A ̂
    x= y
    g( ̂
    x)=A ̂
    x y=0
    f ( ̂
    x)=∥̂
    x∥
    1
    affine function



    → Algorithm based on Linear Programming



    → Drawbacks:
    → good recovery only for high spase signals (K « N)
    → too restritive conditions on A for good recovery
    → computationally intense

    View Slide

  10. l
    2
    –l
    1
    Algorithms
    2. Basis Pursuit De-Noising (BPDN)
    → Noisy case:



    → Algorithm based on Linear Programming



    → Drawbacks:
    → good recovery only for high spase signals (K « N)
    → too restritive conditions on A for good recovery
    → computationally intense
    convex function convex function
    min
    ̂
    x
    {1
    2
    ∥y A ̂
    x∥
    2
    2+λ∥̂
    x∥
    1
    }

    View Slide

  11. l
    2
    –l
    1
    Iterative Algorithms
    3. Orthogonal Matching Pursuit
    → greedy algorithm
    min
    ̂
    x
    {1
    2
    ∥y A ̂
    x∥
    2
    2+λ∥̂
    x∥
    1
    }
    init :r(0) ← y ; S=∅ ; k=0
    until criterium loop:
    find i(k)=arg max∣〈r(k)
    , A〉∣→a
    i(k )
    S ←S∪a
    i(k)
    ̂
    x(k+1) ←S†
    y
    r(k+1) ← y A ̂
    x(k+1)
    k ← k+1
    residual iteration
    column of A

    View Slide

  12. l
    2
    –l
    1
    Iterative Algorithms
    min
    ̂
    x
    {1
    2
    ∥y A ̂
    x∥
    2
    2+λ∥̂
    x∥
    1
    }
    gradient
    iteration
    penalization
    init : ̂
    x(0)=0; k=0; λ(0)
    ; β ∈(0,1)
    until criterium loop:

    ̂
    x
    (k) ← AH A ̂
    x(k)
    AH y
    b(k) ← ̂
    x(k) λ(k) ∇
    ̂
    x
    (k)
    ̂
    x(k+1) ← prox
    λ(k )
    {b(k)}
    λ(k+1) ← β λ(k )
    k ← k+1
    −λ

    4. Proximal-l
    1
    → Iterative Soft-Thresolding

    View Slide

  13. l
    2
    –l
    1
    Minimization: Some Examples
    → Channel Estimation
    → Pilot assisted signal (512 symbols)
    Scenario:
    – 3GPP ETU channel model
    – BW: 50 MHz
    – f
    S
    : 33.3 MHz
    – SNR: 10 dB
    delay [ns] Amplitude [dB]
    0 –1
    50 –1
    120 –1
    200 0
    230 0
    500 0
    1600 –3
    2300 –5
    5000 –7
    y=A h+n
    600 taps
    (each tap: 10 ns)
    200 samples
    (each sample: 30 ns)
    A : [200x600]
    h : [600x1]
    y : [200x1]

    View Slide

  14. l
    2
    –l
    1
    Minimization: Some Examples
    50 100 150 200 250 300 350 400 450 500 550 600
    -1
    0
    1
    Original Channel
    Amplitude
    50 100 150 200 250 300 350 400 450 500 550 600
    -1
    0
    1
    Least Squares Solution
    Amplitude
    1. Least-Squares Solution
    → pure l
    2
    minimization
    Scenario:
    – 3GPP ETU channel model
    – BW: 50 MHz
    – f
    S
    : 33.3 MHz
    – SNR: 10 dB
    delay [ns] Amplitude [dB]
    0 –1
    50 –1
    120 –1
    200 0
    230 0
    500 0
    1600 –3
    2300 –5
    5000 –7

    View Slide

  15. 50 100 150 200 250 300 350 400 450 500 550 600
    -1
    0
    1
    Amplitude
    Original Channel
    0 100 200 300 400 500 600
    -1
    0
    1
    Amplitude
    BPDN
    l
    2
    –l
    1
    Minimization: Some Examples
    2. BPDN Solution
    → l
    2
    –l
    1
    minimization via linear programming
    Scenario:
    – 3GPP ETU channel model
    – BW: 50 MHz
    – f
    S
    : 33.3 MHz
    – SNR: 10 dB
    delay [ns] Amplitude [dB]
    0 –1
    50 –1
    120 –1
    200 0
    230 0
    500 0
    1600 –3
    2300 –5
    5000 –7

    View Slide

  16. 50 100 150 200 250 300 350 400 450 500 550 600
    -1
    0
    1
    Original Channel
    Amplitude
    50 100 150 200 250 300 350 400 450 500 550 600
    -0.2
    -0.1
    0
    0.1
    0.2
    Amplitude
    Proximal L-1 Solution
    l
    2
    –l
    1
    Minimization: Some Examples
    3. Proximal-l
    1
    Solution
    → l
    2
    –l
    1
    minimization via iterative
    algorithm
    Scenario:
    – 3GPP ETU channel model
    – BW: 50 MHz
    – f
    S
    : 33.3 MHz
    – SNR: 10 dB
    delay [ns] Amplitude [dB]
    0 –1
    50 –1
    120 –1
    200 0
    230 0
    500 0
    1600 –3
    2300 –5
    5000 –7

    View Slide

  17. 50 100 150 200 250 300 350 400 450 500 550 600
    -1
    0
    1
    Original Channel
    Amplitude
    50 100 150 200 250 300 350 400 450 500 550 600
    -1
    0
    1
    Amplitude
    OMP Solution
    l
    2
    –l
    1
    Minimization: Some Examples
    4. OMP Solution
    → l
    2
    –l
    1
    minimization via greedy algorithm
    Scenario:
    – 3GPP ETU channel model
    – BW: 50 MHz
    – f
    S
    : 33.3 MHz
    – SNR: 10 dB
    delay [ns] Amplitude [dB]
    0 –1
    50 –1
    120 –1
    200 0
    230 0
    500 0
    1600 –3
    2300 –5
    5000 –7

    View Slide

  18. l
    2
    –l
    1
    Minimization: Some Examples
    → Some (Partial) Conclusions:
    → l
    2
    solution fails as the problem is
    underdetermined
    → l
    2
    –l
    1
    relaxation works with good
    accuracy in this case
    → But if I consider the 3GPP recomendation
    BW of 20 MHz?
    Scenario:
    – 3GPP ETU channel model
    – BW: 50 MHz
    – f
    S
    : 33.3 MHz
    – SNR: 10 dB
    delay [ns] Amplitude [dB]
    0 –1
    50 –1
    120 –1
    200 0
    230 0
    500 0
    1600 –3
    2300 –5
    5000 –7
    Error=∥h ̂
    h∥
    2
    2
    BW
    50 MHz
    Least Squares 114.94
    BPDN 0.4918
    Proximal-l
    1
    4.6436
    OMP 0.0609

    View Slide

  19. l
    2
    –l
    1
    Minimization: Some Examples
    5. BPDN Solution
    → l
    2
    –l
    1
    minimization via linear programming
    50 100 150 200 250 300 350 400 450 500 550 600
    -1
    0
    1
    Amplitude
    Original Channel
    0 100 200 300 400 500 600
    -1
    -0.5
    0
    0.5
    1
    BPDN Solution
    Amplitude
    -1.5 -1 -0.5 0 0.5 1 1.5
    -1.5
    -1
    -0.5
    0
    0.5
    1
    1.5
    Original Channel
    BPDN Solution
    – BW: 20 MHz

    View Slide

  20. l
    2
    –l
    1
    Minimization: Some Examples
    – BW: 20 MHz
    6. Proximal-l
    1
    Solution
    → l
    2
    –l
    1
    minimization via iterative
    algorithm
    50 100 150 200 250 300 350 400 450 500 550 600
    -1
    0
    1
    Amplitude
    Original Channel
    0 100 200 300 400 500 600
    -0.4
    -0.2
    0
    0.2
    0.4
    Amplitude
    Proximal L
    1
    Solution
    -1.5 -1 -0.5 0 0.5 1 1.5
    -1.5
    -1
    -0.5
    0
    0.5
    1
    1.5
    Original Channel
    Proximal L
    1
    Solution

    View Slide

  21. l
    2
    –l
    1
    Minimization: Some Examples
    7. OMP Solution
    → l
    2
    –l
    1
    minimization via greedy algorithm
    – BW: 20 MHz
    50 100 150 200 250 300 350 400 450 500 550 600
    -1
    0
    1
    Amplitude
    Original Channel
    50 100 150 200 250 300 350 400 450 500 550 600
    -1
    0
    1
    Amplitude
    OMP Solution
    -1.5 -1 -0.5 0 0.5 1 1.5
    -1.5
    -1
    -0.5
    0
    0.5
    1
    1.5
    Original Channel
    OMP Solution

    View Slide

  22. l
    2
    –l
    1
    Minimization: Some Examples
    → Some Conclusions:
    → l
    2
    –l
    1
    relaxation fails in this case
    → RIP is not obeyed in this case
    → Matrix A has columns highly correlated
    Scenario:
    – 3GPP ETU channel model
    – BW: 20 MHz
    – f
    S
    : 33.3 MHz
    – SNR: 10 dB
    delay [ns] Amplitude [dB]
    0 –1
    50 –1
    120 –1
    200 0
    230 0
    500 0
    1600 –3
    2300 –5
    5000 –7
    BW
    50 MHz 20 MHz
    BPDN 0.4918 2.9050
    Proximal-l
    1
    4.6436 5.9466
    OMP 0.0609 2.7532
    Error=∥h ̂
    h∥
    2
    2

    View Slide

  23. l
    2
    –l
    0
    Solutions: Dealing With l
    0
    -norm
    min
    ̂
    x
    {1
    2
    ∥y A ̂
    x∥
    2
    2+λ∥̂
    x∥
    0
    }
    gradient
    H √(2λ)
    (u)=
    {0 if ∣u∣u if ∣u∣⩾√(2λ)
    }
    init : ̂
    x(0)=0; k=0; λ
    until criterium loop:

    ̂
    x
    (k) ← AH A ̂
    x(k)
    AH y
    b(k) ← ̂
    x(k) ∇
    ̂
    x
    (k)
    ̂
    x(k+1) ← H √(2λ)
    {b(k)}
    k ← k+1
    → Iterative Hard Thresholding (IHT)(1): variant 1
    → Idea: try to solve applying a
    hard-threshold in order to eliminate noise and bad answers
    √(2λ)
    +√(2λ)
    (1)Blumensath & Davies
    (2004)

    View Slide

  24. l
    2
    –l
    0
    Solutions: Dealing With l
    0
    -norm
    min
    ̂
    x
    {1
    2
    ∥y A ̂
    x∥
    2
    2 s. t. ∥̂
    x∥
    0
    ⩽K
    }
    gradient
    H
    K
    (u)→
    {keeps the K greatest values of u
    sets to 0 all other terms
    }
    init : ̂
    x(0)=0; k=0
    until criterium loop:

    ̂
    x
    (k) ← AH A ̂
    x(k)
    AH y
    b(k) ← ̂
    x(k) ∇
    ̂
    x
    (k)
    ̂
    x(k+1) ← H K
    {b(k)}
    k ← k+1
    → Iterative Hard Thresholding (IHT)(1): variant 2
    → Idea: solve
    (1)Blumensath & Davies
    (2004)

    View Slide

  25. 50 100 150 200 250 300 350 400 450 500 550 600
    -1
    0
    1
    Amplitude
    Original Channel
    50 100 150 200 250 300 350 400 450 500 550 600
    -1
    0
    1
    l
    2
    –l
    0
    Solutions: Dealing With l
    0
    -norm
    → IHT Solution
    → l
    2
    –l
    0
    minimization via iterative algorithm
    – BW: 20 MHz
    -1.5 -1 -0.5 0 0.5 1 1.5
    -1.5
    -1
    -0.5
    0
    0.5
    1
    1.5
    Original Channel
    IHT Solution

    View Slide

  26. l
    2
    –l
    0
    Solutions: Dealing With l
    0
    -norm
    → IHT provides very good sparse channel estimation
    → IHT is simple and has guaranteed convergence for
    BUT:
    → IHT convergence time can be extremelly long
    → Hard-thresholding discontinuity can result in instability problems
    Scenario:
    – 3GPP ETU channel model
    – BW: 20 MHz
    – f
    S
    : 33.3 MHz
    – SNR: 10 dB
    BW
    20 MHz
    BPDN 2.9050
    Proximal-l
    1
    5.9466
    OMP 2.7532
    IHT 0.0059
    Error=∥h ̂
    h∥
    2
    2
    ∥A∥
    2
    <1

    View Slide

  27. l
    2
    –l
    0
    Solutions: Improving IHT Performance
    ̂
    x(k+1)=H √(2λ)

    x(k) ∇
    ̂
    x
    (k))
    H √(2λ)γ∥a
    i

    2
    (ui
    )=
    {sign(u
    i
    )min
    (∣u
    i
    ∣,
    (∣u
    i
    ∣ √(2λ)γ∥a
    i

    2
    )
    +
    (1 ∥a
    i

    2
    2 γ)
    ) if ∥a
    i

    2
    2 γ<1
    H√(2λ γ)
    (ui
    ) if ∥ai

    2
    2 γ⩾1
    }
    → Continuous Exact l
    0
    (CEL0(2)):
    1. Original IHT:
    2. Inclusion of an additional step size γ
    γ
    γ
    γ:
    4. Thresholding modification:
    ̂
    x(k+1)=H √(2λ)γ

    x(k) γ ∇
    ̂
    x
    (k))
    ∥a
    i

    2
    :=l
    2
    norm of the i-th column of A threshold varies
    element-by-element
    original threshold
    (2) Soubies, Blanc-Férraud &
    Aubert (2015)

    View Slide

  28. l
    2
    –l
    0
    Solutions: Improving IHT Performance
    Scenario:
    – 3GPP ETU channel model
    – BW: 50 MHz
    – f
    S
    : 33.3 MHz
    – SNR: 0 to 20 dB
    – 100 Monte-Carlo Simulations
    delay [ns] Amplitude [dB]
    0 –1
    50 –1
    120 –1
    200 0
    230 0
    500 0
    1600 –3
    2300 –5
    5000 –7
    MSE= 1
    100

    i=1
    100
    ∥h ̂
    hi

    2
    2
    0 2 4 6 8 10 12 14 16 18 20
    10-4
    10-3
    10-2
    10-1
    100
    101
    CEL0 vs IHT
    SNR
    MSE
    CEL0
    IHT
    CRB
    → Error:

    View Slide

  29. l
    2
    –l
    0
    Solutions: Improving IHT Performance
    Scenario:
    – 3GPP ETU channel model
    – BW: 50 MHz
    – f
    S
    : 33.3 MHz
    – SNR: 0 to 20 dB
    – 100 Monte-Carlo Simulations
    delay [ns] Amplitude [dB]
    0 –1
    50 –1
    120 –1
    200 0
    230 0
    500 0
    1600 –3
    2300 –5
    5000 –7
    0 2 4 6 8 10 12 14 16 18 20
    102
    103
    104
    105
    CEL0 vs IHT
    SNR
    # of Iterations
    CEL0
    IHT
    → Convergence Time (number of iterations):

    View Slide

  30. l
    2
    –l
    0
    Minimization: DoA Estimation
    → Traditional Approach:
    → K incident signals
    → N antennas
    → L snapshots
    Y=AS+N
    A: [NxK]
    S: [KxL]
    Y: [NxL]
    unknown
    matrix
    problem
    Classical Solutions:
    – MUSIC
    – ESPRIT
    – RootMUSIC
    – ...
    very “expensive”
    solutions

    View Slide

  31. l
    2
    –l
    0
    Minimization: DoA Estimation
    → “Compressed” Approach:
    → K incident signals
    → N antennas
    → L snapshots
    Y=A
    G
    S
    G
    +N
    SPARSE!
    KNOWN!

    View Slide

  32. -10 -5 0 5 10 15 20
    10-2
    10-1
    100
    101
    102
    RMSE for 64 Antennas
    SNR
    RMSE ( o )
    IHT
    MUSIC
    l
    2
    –l
    0
    Minimization: DoA Estimation
    → Some Simulations:
    Scenario:
    – K = 2 incident signals
    – θ1
    = 0°
    – θ2
    = 5°
    – N = 64 antennas (ULA)
    – L = 10 snapshots
    – ∆θ = 0.15°
    – G = 601 taps (–45° to +45°)
    – SNR: –10 to 20 dB
    – 100 Monte-Carlo runs
    – IHT and MUSIC algorithms
    RMSE= 1
    200
    √(∑
    i=1
    200
    [(θ
    1
    ̂
    θ
    1i
    )2+(θ
    2
    ̂
    θ
    2i
    )2]
    )

    View Slide

  33. -10 -5 0 5 10 15 20
    10-2
    10-1
    100
    101
    102
    RMSE for 24 Antennas
    SNR
    RMSE ( o )
    IHT
    MUSIC
    l
    2
    –l
    0
    Minimization: DoA Estimation
    → Some Simulations:
    Scenario:
    – K = 2 incident signals
    – θ1
    = 0°
    – θ2
    = 5°
    – N = 24 antennas (ULA)
    – L = 10 snapshots
    – ∆θ = 0.15°
    – G = 601 taps (–45° to +45°)
    – SNR: –10 to 20 dB
    – 100 Monte-Carlo runs
    – IHT and MUSIC algorithms
    RMSE= 1
    200
    √(∑
    i=1
    200
    [(θ
    1
    ̂
    θ
    1i
    )2+(θ
    2
    ̂
    θ
    2i
    )2]
    )

    View Slide

  34. l
    0
    -Optimization for DoA and Sparse Channel Estimation
    → Conclusions:
    → l
    0
    -optimization enables enhancement in channel estimation
    → precision and resolution
    → l
    0
    -optimization by iterative algorithms provide simple, efficient
    and elegant solutions to sparse problems
    → DoA estimation can be transformed in a sparse problem whose
    solution could be reached via l
    0
    -optimization
    → CEL0 provides enhancement in convergence rate and stability
    of IHT
    → Future:
    → verification of l
    0
    -optimization limits in channel estimation
    → application of IHT modified by CEL0 in DoA estimation
    → application of l
    0
    -optimization in other problems
    → e. g. non-pilot aided channel estimation, ...

    View Slide

  35. View Slide