Upgrade to Pro — share decks privately, control downloads, hide ads and more …

György Terdik

S³ Seminar
January 30, 2015

György Terdik

(University of Debrecen, Hungary)

https://s3-seminar.github.io/seminars/gyorgy-terdik

Title — A new covariance function for spatio-temporal data analysis with application to atmospheric pollution and sensor networking

S³ Seminar

January 30, 2015
Tweet

More Decks by S³ Seminar

Other Decks in Research

Transcript

  1. A new covariance function for
    spatio-temporal data analysis with
    application to atmospheric pollution and
    sensor networking
    György Terdik and Subba Rao Tata
    UofD, HU & UofM, UK
    January 30, 2015
    Laboratoire des Signaux et Systemes, Supelec,
    Paris, Gif-sur-Yvette
    Gy. Terdik & S. Rao T. (UofD, HU & UofM, UK ) Spatio-Temporal Fields
    January 30, 2015 Laboratoire des Signaux et S
    / 19

    View Slide

  2. Spatio-temporal observations
    New York City air pollution data, PM2.5 measure is one
    of six primary air pollutants and is a mixture of …ne
    particles and gaseous compounds such as sulphur dioxide
    (SO2) and nitrogen oxides (NOx)
    Gy. Terdik & S. Rao T. (UofD, HU & UofM, UK ) Spatio-Temporal Fields
    January 30, 2015 Laboratoire des Signaux et S
    / 19

    View Slide

  3. In 2002, every 3 days and during the …rst 9 months, 91
    equally spaced days, observed at 15 monitoring stations,
    X (s, t), see [SM05],
    fZ (s, t) = ∆t
    X (s, t) : (s, t) : s 2 R2, t 2 Zg
    0 10 20 30 40 50 60 70 80 90 100
    0
    10
    20
    30
    40
    50
    60
    70
    80
    90
    Days
    PM2.5
    Gy. Terdik & S. Rao T. (UofD, HU & UofM, UK ) Spatio-Temporal Fields
    January 30, 2015 Laboratoire des Signaux et S
    / 19

    View Slide

  4. Missing data: mean by locations and …xed in time, but
    3/4 of data at Location #11 is missing, namely from
    days 24th to 91st, location s0
    , fZ(s0
    , t); t = 1, 2, 3...ng.
    Sample fZ (si
    , t) ; si
    = 1, 2, ...m; t = 1, . . . , ng. Bronx,
    Brooklyn, Manhattan, Queens, Staten Island
    -74.15 -74.1 -74.05 -74 -73.95 -73.9 -73.85 -73.8
    40.55
    40.6
    40.65
    40.7
    40.75
    40.8
    40.85
    40.9
    40.95
    X = -73.96
    Y = 40.75
    Latitudes
    Longitudes
    Gy. Terdik & S. Rao T. (UofD, HU & UofM, UK ) Spatio-Temporal Fields
    January 30, 2015 Laboratoire des Signaux et S
    / 19

    View Slide

  5. -74.2 -74.15 -74.1 -74.05 -74 -73.95 -73.9 -73.85 -73.8 -73.75 -73.7
    40.5
    40.55
    40.6
    40.65
    40.7
    40.75
    40.8
    40.85
    40.9
    40.95
    41
    X = -73.84
    Y = 40.77
    Gy. Terdik & S. Rao T. (UofD, HU & UofM, UK ) Spatio-Temporal Fields
    January 30, 2015 Laboratoire des Signaux et S
    / 19

    View Slide

  6. We assume that the random process is spatially and
    temporally second order stationary, homogeneous and
    isotropic, i.e. E [Z (s, t)] = µ, Var [Z (s, t)] = σ2
    Z
    < ∞
    Cov [Z (s, t) , Z (s + h, t + u)] = c (h, u) = c (khk , u) ,
    We note that c (h, 0) and c (0, u) correspond to the
    purely spatial and purely temporal covariances.
    Spatio-temporal variogram for fZ (h, t)g
    2γ (h, u) = Var [Z (s + h, t + u) Z (s, t)] .
    2γ (h, u) = 2 [c (0, 0) c (h, u)] ,
    for an isotropic process, γ (h, u) = γ (khk , u).
    Gy. Terdik & S. Rao T. (UofD, HU & UofM, UK ) Spatio-Temporal Fields
    January 30, 2015 Laboratoire des Signaux et S
    / 19

    View Slide

  7. DFT
    Frequency domain in time and Spatial domain in
    space, fZ (si
    , t) ; t = 1, . . . , ng
    DFT at ωk
    = 2πk
    n
    , k = 0, 1, . . . , n
    2
    .
    Jsi
    (ωk
    ) =
    1
    p
    2πn
    n

    t=1
    Z (si
    , t) e itωk ,
    periodogram
    Isi
    (ωk
    ) = jJsi
    (ωk
    )j2 .
    Gy. Terdik & S. Rao T. (UofD, HU & UofM, UK ) Spatio-Temporal Fields
    January 30, 2015 Laboratoire des Signaux et S
    / 19

    View Slide

  8. Jsi
    (ωk
    ) asymptotically independent and Gaussian
    E (Jsi
    (ωk
    )) = 0
    Var (Jsi
    (ωk
    )) = E (Isi
    (ωk
    )) ' gsi
    (ωk
    ) .
    Cov Jsi
    (ωk
    ) , Jsi
    ωk0
    ' 0, k 6= k0.
    Isotropy
    gsi
    (ωk
    ) = g (ωk
    ) , for all i
    Gy. Terdik & S. Rao T. (UofD, HU & UofM, UK ) Spatio-Temporal Fields
    January 30, 2015 Laboratoire des Signaux et S
    / 19

    View Slide

  9. Fourier T and Spectral Repr
    Introduce white noise
    Js,e
    (ω) =
    Z
    eis λ
    r
    n

    dZe
    (λ, ω) .
    Laplacian
    ∂2
    ∂s2
    1
    + ∂2
    ∂s2
    2
    jc (ω)j2
    ν
    Js
    (ω) = Js,e
    (ω) .
    λ2
    1 λ2
    2
    jc (ω)j2 ν
    dZz
    (λ, ω) = dZe
    (λ, ω) ,
    Gy. Terdik & S. Rao T. (UofD, HU & UofM, UK ) Spatio-Temporal Fields
    January 30, 2015 Laboratoire des Signaux et S
    / 19

    View Slide

  10. Spectral density
    fz
    (λ, ω) = σ2
    e
    (2π)2
    λ2
    1
    + λ2
    2
    + jc (ω)j2

    Covariance
    Cov (Js
    (ω) , Js+h
    (ω))
    = σ2
    e

    khk
    2 jc (ω)j
    2ν 1 K2ν 1
    (jc (ω)j khk)
    Γ(2ν)
    K2ν 1
    : modi…ed Bessel function of the second kind of
    order 2ν 1.
    Gy. Terdik & S. Rao T. (UofD, HU & UofM, UK ) Spatio-Temporal Fields
    January 30, 2015 Laboratoire des Signaux et S
    / 19

    View Slide

  11. General, Rd, ν 2 integer, correlation function is given
    by
    ρ (khk , ω) =
    (khk jc (ω)j)2ν d
    2
    22ν d
    2
    1Γ 2ν d
    2
    K
    2ν d
    2
    (khk jc (ω)j) ,
    and
    C (0, ω) = σ2
    e
    (2π)d
    2 2d
    2 jc (ω)j2
    2ν d
    2
    Γ 2ν d
    2
    Γ (2ν)
    = g (ω) .
    Gy. Terdik & S. Rao T. (UofD, HU & UofM, UK ) Spatio-Temporal Fields
    January 30, 2015 Laboratoire des Signaux et S
    / 19

    View Slide

  12. Parameters
    C (0, ω) = σ2
    e
    2 (2ν 1) jc (ω)j2
    2ν 1
    = g (ω) .
    jc (ω)j2 and common spectral density g (ω), ARMA,
    FARMA etc..
    Estimation of parameters
    Gy. Terdik & S. Rao T. (UofD, HU & UofM, UK ) Spatio-Temporal Fields
    January 30, 2015 Laboratoire des Signaux et S
    / 19

    View Slide

  13. Correlation
    ρ (khk , ω) =
    C (khk , ω)
    C (0, ω)
    =
    1
    22ν 2Γ (2ν 1)
    (khk jc (ω)j)2ν 1 K2ν 1
    (jc (ω)j khk) .
    Special case ν = 1,
    ρ (khk , ω) = khk jc (ω)j K1
    (khk jc (ω)j) .
    Gy. Terdik & S. Rao T. (UofD, HU & UofM, UK ) Spatio-Temporal Fields
    January 30, 2015 Laboratoire des Signaux et S
    / 19

    View Slide

  14. Spatio-temporal prediction
    Js0
    (ω) =
    1
    p
    (2πn)
    n

    t=1
    Z (s0
    , t) e itω,
    and by inversion, we have
    Z (s0
    , t) =
    r
    n

    π
    Z
    π
    Js0
    (ω) eitωdω.
    In other words given fJs0
    (ω) , for all π ω πg,
    we can uniquely recover the sequence
    fZ (s0
    , t) ; t = 1, . . . , ng.
    Gy. Terdik & S. Rao T. (UofD, HU & UofM, UK ) Spatio-Temporal Fields
    January 30, 2015 Laboratoire des Signaux et S
    / 19

    View Slide

  15. Given
    J0
    m
    (ω) = [Js1
    (ω) , Js2
    (ω) , . . . , Jsm
    (ω)] .
    We note
    E [Jm
    (ω)] = 0
    E [Jm
    (ω) Jm
    (ω)] = Fm
    (ω) ,
    Fm
    (ω) = (C (ksi
    sj
    k , ω) ; i, j = 1, 2, . . . , m), and
    each element C (ksi
    sj
    k , ω) is given above.
    Gy. Terdik & S. Rao T. (UofD, HU & UofM, UK ) Spatio-Temporal Fields
    January 30, 2015 Laboratoire des Signaux et S
    / 19

    View Slide

  16. J0
    m+1
    (ω) = [J0
    (ω) , J0
    m
    (ω)] ,
    which has zero mean, and variance covariance matrix
    E [Jm+1
    (ω) Jm+1
    (ω)]
    =
    C0
    (0, ω) E (J0
    (ω) J 0
    m
    (ω))
    E (Jm
    (ω) J0
    (ω)) E (Jm
    (ω) Jm
    (ω))
    =
    C0
    (0, ω) G0
    0
    (ω)
    G0
    (ω) Fm
    (ω)
    ,
    Gy. Terdik & S. Rao T. (UofD, HU & UofM, UK ) Spatio-Temporal Fields
    January 30, 2015 Laboratoire des Signaux et S
    / 19

    View Slide

  17. C0
    (0, ω) = E (J0
    (ω) J0
    (ω)) = C (0, ω),
    G0
    0
    (ω) = E [J0
    (ω) J 0
    m
    (ω)]
    = [C (ks0
    s1
    k , ω) , . . . , C (ks0
    sm
    k , ω)]
    E [J0
    (ω) jJm
    (ω)] = G0
    0
    (ω) F 1
    m
    (ω) Jm
    (ω)
    the minimum mean square error
    σ2
    m
    (ω) = C (0, ω) G0
    0
    (ω) F 1
    m
    (ω) G0
    (ω) .
    ˆ
    J0
    (ω) = ˆ
    G0
    0
    (ω) ˆ
    F 1
    m
    (ω) Jm
    (ω) .
    Gy. Terdik & S. Rao T. (UofD, HU & UofM, UK ) Spatio-Temporal Fields
    January 30, 2015 Laboratoire des Signaux et S
    / 19

    View Slide

  18. Air pollution data, common spectral density g (ω),
    ARMA(1,1), parameters estimation by Whittle method,
    see [ST13] for details
    0 20 40 60 80 100
    -20
    0
    20
    40
    60
    80
    100
    120
    Predicted
    Measured & means
    Gy. Terdik & S. Rao T. (UofD, HU & UofM, UK ) Spatio-Temporal Fields
    January 30, 2015 Laboratoire des Signaux et S
    / 19

    View Slide

  19. -73.9
    -73.8
    -73.7
    -73.6
    -73.5
    -73.4
    40.5
    40.6
    40.7
    40.8
    40.9
    41
    2
    4
    6
    8
    10
    12
    Gy. Terdik & S. Rao T. (UofD, HU & UofM, UK ) Spatio-Temporal Fields
    January 30, 2015 Laboratoire des Signaux et S
    / 19

    View Slide

  20. S. K. Sahu and K. V. Mardia.
    A bayesian kriged kalman model for short-term
    forecasting of air pollution levels.
    Journal of the Royal Statistical Society: Series C
    (Applied Statistics) 54(1), 223–244 (2005).
    T. Subba Rao and Gy. Terdik.
    A space-time covariance function for spatio-temporal
    random processes and spatio-temporal prediction
    (kriging).
    ArXiv e-prints (November 2013).
    Gy. Terdik & S. Rao T. (UofD, HU & UofM, UK ) Spatio-Temporal Fields
    January 30, 2015 Laboratoire des Signaux et S
    / 19

    View Slide