Upgrade to Pro — share decks privately, control downloads, hide ads and more …

コロナ禍における住居探し / iekaitai202001

コロナ禍における住居探し / iekaitai202001

D12a80cab206033a820ccff8319f957b?s=128

Uryu Shinya

January 23, 2021
Tweet

Transcript

  1. Data Science for me 20210123 Tokyo.R#89 LT !VSJCPɺΛങ͏ ίϩφՒʹ͓͚Δॅډ୳͠ Shinya

    Uryu ( @u_ribo uribo)
  2. ʮҾͬӽ͠ʯΛݕ౼͠·͔ͨ͠ʁ ཁ఺ σʔλΛݟͯ৮Ζ͏ ˞!VSJCPɺ·ͩങ͍ͬͯ·ͤΜɻ Data Science for me ՄࢹԽͱ(*4

  3. https://github.com/sponsors/uribo ఏڙ @yutannihilation @katsurakob @kanji14134 @siero5335 @niszet @ito4303 @ak9782427 (JU)VC4QPOTPST

    ͷօ͞· @teramonagi @takehikoihayashi @ytknzw
  4. Ҿͬӽ͍ͨ͠͠ਓ✋ ϦϞʔτϫʔΫͷਁಁ ࣗ୐࣌ؒͷ૿Ճ Ұࡢ೥ ೥ ͱൺ΂Δͱগ͠૿͑ͨʁ $07*%ͷྲྀߦ

  5. ౎ಓ෎ݝ஍Ձ ೥౓શࠃͷॅ୐஍ɾ঎ۀ஍ΛؚΉશ༻్ฏۉ ௿Լ೥ͿΓͷԼམ ೥౓ൺ ࣗ෼ͷ֗Ͱ͸Ͳ͏ͩΖ͏ʁ ࠃ౔ަ௨ল͕΢ΣϒͰ֓ཁɺσʔλΛܝࡌ Ministry of Land, Infrastructure,

    Transport and Tourism 令和 年 府 地価 査 概 国土利用 画法施行令 基 各 府県知事 毎年 月 日 基準地 当 価格 査 公表 府県 発表 合 国土交 省 全国 状況 公表 今回 基準地数 地点 福島第一原子力発 所 事故 影 地点 査 休止 国土交 省 土地 定委員会 実施 地価公示 毎年 月 日時点 査 査時期 査地点 相互 補完的 係 不動産 建設経済局 ࠃ౔਺஋৘ใ͔ΒσʔλΛμ΢ϯϩʔυՄೳ https://nlftp.mlit.go.jp/ksj/gml/datalist/KsjTmplt-L02-v2_7.html
  6. Ͱ΍Ζ͏ ίʔυ͸ɹ(JU)VCϦϙδτϦʹܝࡌ TG VSJCPLVOJVNJ NBQWJFX UJEZWFSTF LOJUS LBCMF&YUSB HHQMPU VSJCPLVOJF[V

    ࠓճ࢖ͬͨओͳύοέʔδ σʔλಡΈࠐΈ σʔλૢ࡞ දݱ HHIJHIMJHIU https://github.com/uribo/talk_210123_tokyor89
  7. ࠃ౔਺஋৘ใ # Rows: 21,507 # Columns: 129 # $ L02_001

    <chr> "005", "005", "005", "000", "000", "000", "000", "000", "000"… # $ L02_002 <chr> "001", "002", "003", "001", "002", "003", "004", "005", "006"… # $ L02_003 <chr> "005", "005", "005", "000", "000", "000", "000", "000", "000"… # $ L02_004 <chr> "001", "002", "003", "001", "002", "003", "004", "005", "006"… # $ L02_005 <int> 2020, 2020, 2020, 2020, 2020, 2020, 2020, 2020, 2020, 2020, 2… # $ L02_006 <int> 84500, 94300, 64300, 20800, 7000, 5800, 46400, 37800, 11500, … # $ L02_007 <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1… # $ L02_008 <chr> "false", "false", "false", "false", "false", "false", "false"… # $ L02_009 <chr> "false", "false", "false", "false", "false", "false", "false"… # $ L02_010 <chr> "false", "false", "false", "false", "false", "false", "false"… # $ L02_011 <chr> "false", "false", "false", "false", "false", "false", "false"… # $ L02_012 <chr> "false", "false", "false", "false", "false", "false", "false"… # $ L02_013 <chr> "false", "false", "false", "false", "false", "false", "false"… # $ L02_014 <chr> "false", "false", "false", "false", "false", "false", "false"… # $ L02_015 <chr> "false", "false", "false", "false", "false", "false", "false"… # $ L02_016 <chr> "false", "false", "false", "false", "false", "false", "false"… # $ L02_017 <chr> "false", "false", "false", "false", "false", "false", "false"… # $ L02_018 <chr> "false", "false", "false", "false", "false", "false", "false"… # $ L02_019 <chr> "false", "false", "false", "false", "false", "false", "false"… # $ L02_020 <chr> "false", "false", "false", "false", "false", "false", "false"… # $ L02_021 <chr> "01110", "01110", "01110", "01202", "01202", "01202", "01202"… # $ L02_022 <chr> "札幌ਗ਼田", "札幌ਗ਼田", "札幌ਗ਼田", "函館", "函館", "函館", "函館", "函館", "函館", "… # $ L02_023 <chr> "北海道 札幌市ਗ਼田۠平岡9৚1−8−1", "北海道 札幌市ਗ਼田۠ਅӫ1৚1−1−17", "北海道 札幌市ਗ਼田۠里塚1… # $ L02_024 <int> 1015, 1695, 2782, 293, 500, 446, 198, 236, 181, 304, 172, 165… # $ L02_025 <chr> "店ฮ,事務所", "店ฮ,事務所", "店ฮ,工場", "住宅", "住宅", "住宅", "住宅", "住宅", "住… # $ L02_026 <chr> "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "… # $ L02_027 <chr> "RC2F1B", "RC2", "S2", "W2", "W1", "W2", "W2", "W2", "W2", "W… # $ L02_028 <chr> "true", "true", "true", "true", "true", "true", "true", "true… # $ L02_029 <chr> "true", "true", "false", "true", "false", "false", "true", "t… # $ L02_030 <chr> "true", "true", "true", "true", "false", "false", "true", "tr… # $ L02_031 <chr> "_", "台形", "台形", "_", "_", "台形", "_", "_", "_", "_", "_", "_"… # $ L02_032 <dbl> 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1… # $ L02_033 <dbl> 1.5, 1.5, 3.0, 1.2, 1.0, 2.0, 1.5, 1.5, 1.2, 1.5, 1.5, 1.5, 1… # $ L02_034 <int> 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 3, 1… # $ L02_035 <int> 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1… # $ L02_036 <chr> "都道府ݝ道", "ࠃ道", "ࠃ道", "市۠町村道", "ࠃ道", "都道府ݝ道", "市۠町村道", "市۠町村道"… # $ L02_037 <chr> "北西", "北東", "南西", "南西", "北東", "北", "南東", "南", "北西", "西", "東",… # $ L02_038 <dbl> 25.0, 25.0, 25.0, 6.0, 7.0, 10.2, 8.0, 5.5, 8.0, 8.0, 8.0, 8.… # $ L02_039 <chr> "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "… # $ L02_040 <chr> "_", "_", "側道", "_", "_", "_", "_", "_", "_", "_", "_", "_", … # $ L02_041 <chr> "_", "_", "北西", "_", "_", "_", "_", "_", "_", "_", "_", "_", … # $ L02_042 <chr> "中小規模店ฮ、銀行等が建ちฒぶ路線商業地域", "店ฮ事務所ビル、病院等が建ちฒぶࠃ道沿いの路線商業地域", "Ӧ業所、… # $ L02_043 <chr> "地下మ大谷地", "地下మ福住", "地下మ福住", "函館", "函館", "函館", "五稜郭", "電停函館アリʔ… # $ L02_044 <int> 1400, 3900, 6400, 8100, 29000, 48000, 1100, 950, 6500, 350, 1… # $ L02_045 <chr> "近商", "近商", "準工", "1中ઐ", "_", "_", "2中ઐ", "1住居", "_", "2中ઐ", … # $ L02_046 <chr> "準防", "準防", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_",… # $ L02_047 <chr> "市街化", "市街化", "市街化", "市街化", "都計外", "都計外", "市街化", "市街化", "調۠",… # $ L02_048 <chr> "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "… # $ L02_049 <chr> "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "_", "… # $ L02_050 <int> 80, 80, 60, 60, 0, 0, 60, 60, 50, 60, 60, 50, 60, 0, 50, 60, … # $ L02_051 <int> 200, 200, 200, 200, 0, 0, 200, 200, 100, 200, 200, 100, 200, … # $ L02_052 <chr> "false", "false", "false", "false", "false", "false", "true",… # $ L02_053 <chr> "00000000000000111111111111111111111111", "000000000000001111… # … # $ L02_091 <int> 84500, 94300, 64300, 20800, 7000, 5800, 46400, 37800, 11500, … # $ L02_092 <chr> "00000000000000", "00000000000000", "00000000000000", "100000… # … # $ L02_128 <chr> "10000000000000", "10000000000000", "10000000000000", "100000… # $ geometry <POINT [°]> POINT (141.45307555 43.0164..., POINT (141.4400275 42.9… σʔλ੔ܗ ͕͍͠ͷ͋Δ SBXσʔλ ܽଛ͕@ ࿦ཧ஋͕3ͷ536&'"-4&Ͱ͸ͳ͘จࣈྻ ৑௕ͳྻʢOPUUJEZ
  8. શࠃͷ܏޲ Ҏ্ dະຬ dະຬ Ҏ্ ྩ࿨೥౎ಓ෎ݝผ஍Ձมಈ཰ ॅ୐஍

  9. ද΋࡞Ζ͏ มಈ཰্ঢ཰ɾԼམ཰ॱҐදʢશࠃɾॅ୐஍ʣ

  10. ౦ژ౎ͷ܏޲ ΠϯλϥΫςΟϒʹ Demo

  11. HHQMPUͰάϥϑɺ஍ਤඳը Population per square mile 0−10 10−50 50−100 100−500 500−1,000

    1,000−5,000 >5,000 AL AL AR DE FL GA GA GA GA GA GA GA GA IL MS MS MS NC NC NC NC NC SC SC SC SC SC TN TX VA VA VA VA VA 0% 20% 40% 60% 80% 1,000 100,000 10,000,000 County Population (log scale) Percent Black Population County flipped to ... Democrat Republican Flipped counties, 2016 Counties in gray did not flip. AL AL AR DE FL GA GA GA GA GA GA GA GA IL MS MS MS NC NC NC NC NC SC SC SC SC SC TN TX VA VA VA VA VA 0% 20% 40% 60% 80% 1,000 100,000 10,000,000 County Population (log scale) Percent Black Population County flipped to ... Democrat Republican Flipped counties, 2016 Counties in gray did not flip. Extremely Conservative Conservative Slightly Conservative Female Race: Other Slightly Liberal Extremely Liberal Liberal Race: Black −0.50 −0.25 0.00 0.25 Average Marginal Effect https://www.kspub.co.jp/book/detail/5164044.html
  12. Data Science for me ͦ͏ͩɺՈΛ୳ͦ͏ Λ࢖ͬͯ

  13. ݸਓଐੑ Ἒ৓ݝͭ͘͹ࢢࡏॅ ౎಺ɺۙྡ΁ͷస৬͕͋Δ͔΋ˠిंɺ౎৺΁ͷߦ͖΍͢͞΋େࣄ কདྷతʹ͸ࢠڙ͕͍Δ͔΋ ं͋Γ ୅୅ͷ෉්ʴখܕݘ

  14. Ἒ৓ݝ಺ͷॅ୐஍ʹߜΓࠐΈ क୩ࢢɺͭ͘͹ࢢ ݱࡏͷډॅ஍ʹ͍ۙ ݝ಺Ͱ͸ߴΊ ੴԬࢢɺখඒۄࢢ Շ࣮Ոۙ͘ɺ+3ৗ൬ઢ ❌஍఺਺͕গͳ͍

  15. ௕ظతࢹઢͰ ։ൃ్தͷ౔஍΋͋Γɺ೥͘Β͍͸େ͖ͳมಈ͕ͳ͍

  16. ΋ͬͱߜΓࠐΈ͍ͨ Demo

  17. ग़యɾϦϯΫ εϥΠυͰܝࡌͨ͠౎ಓ෎ݝ஍Ձσʔλ͸ɺࠃ౔ަ௨লࠃ౔਺஋৘ใ ʢ౎ಓ෎ݝ஍Ձௐࠪσʔλ-IUUQTOMGUQNMJUHPKQLTKHNM EBUBMJTU,TK5NQMU-W@IUNMྩ࿨೥ੈքଌ஍ܥʢશࠃʣʣΛ ࢖༻͠ӝੜਅ໵͕࡞੒ɾՃ޻ɻ

  18. ʮҾͬӽ͠ʯΛݕ౼͠·ͤΜ͔ʁ ཁ఺ σʔλΛݟͯ৮Ζ͏ ࢲ͸օ͞Μͷ஌ݟΛ஌Γ͍ͨ Data Science for me ՄࢹԽͱ(*4

  19. &/+0: Data Science for me To Be Continued