Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Confusion Matrix Explained
Search
Samuel Bohman
October 24, 2017
Science
0
70
Confusion Matrix Explained
This slide deck explains what a confusion matrix is and how to interpret it.
Samuel Bohman
October 24, 2017
Tweet
Share
Other Decks in Science
See All in Science
PPIのみを用いたAIによる薬剤–遺伝子–疾患 相互作用の同定
tagtag
PRO
0
160
データマイニング - ノードの中心性
trycycle
PRO
0
330
【RSJ2025】PAMIQ Core: リアルタイム継続学習のための⾮同期推論・学習フレームワーク
gesonanko
0
640
LayerXにおける業務の完全自動運転化に向けたAI技術活用事例 / layerx-ai-jsai2025
shimacos
4
21k
蔵本モデルが解き明かす同期と相転移の秘密 〜拍手のリズムはなぜ揃うのか?〜
syotasasaki593876
1
200
イロレーティングを活用した関東大学サッカーの定量的実力評価 / A quantitative performance evaluation of Kanto University Football Association using Elo rating
konakalab
0
190
データベース12: 正規化(2/2) - データ従属性に基づく正規化
trycycle
PRO
0
1.1k
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
250
データマイニング - コミュニティ発見
trycycle
PRO
0
200
(2025) Balade en cyclotomie
mansuy
0
450
会社でMLモデルを作るとは @電気通信大学 データアントレプレナーフェロープログラム
yuto16
1
520
Vibecoding for Product Managers
ibknadedeji
0
130
Featured
See All Featured
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.4k
A Soul's Torment
seathinner
5
2.2k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Making Projects Easy
brettharned
120
6.6k
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
210
Organizational Design Perspectives: An Ontology of Organizational Design Elements
kimpetersen
PRO
1
180
Testing 201, or: Great Expectations
jmmastey
46
8k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.9k
Reflections from 52 weeks, 52 projects
jeffersonlam
356
21k
Speed Design
sergeychernyshev
33
1.5k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
PRO
1
1.1k
Transcript
Confusion Matrix Explained Samuel Bohman
What is a Confusion Matrix? A common method for describing
the performance of a classification model consisting of true positives, true negatives, false positives, and false negatives. It is called a confusion matrix because it shows how confused the model is between the classes.
True Positives Predicted class Apple Orange Pear Actual class Apple
50 5 50 Orange 10 50 20 Pear 5 5 0 The model correctly classified 50 apples and 50 oranges.
True Negatives for Apple The model correctly classified 75 cases
as not belonging to class apple. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0
True Negatives for Orange The model correctly classified 105 cases
as not belonging to class orange. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0
True Negatives for Pear The model correctly classified 115 cases
as not belonging to class pear. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0
False Positives for Apple The model incorrectly classified 15 cases
as apples. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0
False Positives for Orange The model incorrectly classified 10 cases
as oranges. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0
False Positives for Pear The model incorrectly classified 70 cases
as pears. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0
False Negatives for Apple The model incorrectly classified 55 cases
as not belonging to class apple. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0
False Negatives for Orange The model incorrectly classified 30 cases
as not belonging to class orange. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0
False Negatives for Pear The model incorrectly classified 10 cases
as not belonging to class pears. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0