Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Confusion Matrix Explained
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Samuel Bohman
October 24, 2017
Science
0
70
Confusion Matrix Explained
This slide deck explains what a confusion matrix is and how to interpret it.
Samuel Bohman
October 24, 2017
Tweet
Share
Other Decks in Science
See All in Science
機械学習 - K-means & 階層的クラスタリング
trycycle
PRO
0
1.2k
データベース03: 関係データモデル
trycycle
PRO
1
340
AIに仕事を奪われる 最初の医師たちへ
ikora128
0
1k
Cross-Media Technologies, Information Science and Human-Information Interaction
signer
PRO
3
32k
20251212_LT忘年会_データサイエンス枠_新川.pdf
shinpsan
0
230
データベース15: ビッグデータ時代のデータベース
trycycle
PRO
0
440
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
470
凸最適化からDC最適化まで
santana_hammer
1
350
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
250
高校生就活へのDA導入の提案
shunyanoda
1
6.2k
KH Coderチュートリアル(スライド版)
koichih
1
58k
データベース10: 拡張実体関連モデル
trycycle
PRO
0
1.1k
Featured
See All Featured
The agentic SEO stack - context over prompts
schlessera
0
630
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
Optimizing for Happiness
mojombo
379
71k
Fashionably flexible responsive web design (full day workshop)
malarkey
408
66k
Designing for Timeless Needs
cassininazir
0
130
Docker and Python
trallard
47
3.7k
Leveraging Curiosity to Care for An Aging Population
cassininazir
1
160
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
200
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Breaking role norms: Why Content Design is so much more than writing copy - Taylor Woolridge
uxyall
0
160
Leo the Paperboy
mayatellez
4
1.4k
Transcript
Confusion Matrix Explained Samuel Bohman
What is a Confusion Matrix? A common method for describing
the performance of a classification model consisting of true positives, true negatives, false positives, and false negatives. It is called a confusion matrix because it shows how confused the model is between the classes.
True Positives Predicted class Apple Orange Pear Actual class Apple
50 5 50 Orange 10 50 20 Pear 5 5 0 The model correctly classified 50 apples and 50 oranges.
True Negatives for Apple The model correctly classified 75 cases
as not belonging to class apple. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0
True Negatives for Orange The model correctly classified 105 cases
as not belonging to class orange. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0
True Negatives for Pear The model correctly classified 115 cases
as not belonging to class pear. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0
False Positives for Apple The model incorrectly classified 15 cases
as apples. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0
False Positives for Orange The model incorrectly classified 10 cases
as oranges. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0
False Positives for Pear The model incorrectly classified 70 cases
as pears. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0
False Negatives for Apple The model incorrectly classified 55 cases
as not belonging to class apple. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0
False Negatives for Orange The model incorrectly classified 30 cases
as not belonging to class orange. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0
False Negatives for Pear The model incorrectly classified 10 cases
as not belonging to class pears. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0