Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Confusion Matrix Explained
Search
Samuel Bohman
October 24, 2017
Science
0
70
Confusion Matrix Explained
This slide deck explains what a confusion matrix is and how to interpret it.
Samuel Bohman
October 24, 2017
Tweet
Share
Other Decks in Science
See All in Science
Lean4による汎化誤差評価の形式化
milano0017
1
430
先端因果推論特別研究チームの研究構想と 人間とAIが協働する自律因果探索の展望
sshimizu2006
3
760
データマイニング - コミュニティ発見
trycycle
PRO
0
200
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
190
SpatialRDDパッケージによる空間回帰不連続デザイン
saltcooky12
0
160
Text-to-SQLの既存の評価指標を問い直す
gotalab555
1
170
サイコロで理解する原子核崩壊と拡散現象 〜単純化されたモデルで本質を理解する〜
syotasasaki593876
0
150
データベース12: 正規化(2/2) - データ従属性に基づく正規化
trycycle
PRO
0
1.1k
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
PRO
1
230
デジタルアーカイブの教育利用促進を目指したメタデータLOD基盤に関する研究 / Research on a Metadata LOD Platform for Promoting Educational Uses of Digital Archives
masao
0
150
機械学習 - SVM
trycycle
PRO
1
980
HajimetenoLT vol.17
hashimoto_kei
1
170
Featured
See All Featured
Exploring the relationship between traditional SERPs and Gen AI search
raygrieselhuber
PRO
2
3.6k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
52k
Producing Creativity
orderedlist
PRO
348
40k
How to Talk to Developers About Accessibility
jct
2
130
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.2k
Making Projects Easy
brettharned
120
6.6k
Why Your Marketing Sucks and What You Can Do About It - Sophie Logan
marketingsoph
0
72
Building Experiences: Design Systems, User Experience, and Full Site Editing
marktimemedia
0
410
Test your architecture with Archunit
thirion
1
2.1k
We Have a Design System, Now What?
morganepeng
54
8k
Game over? The fight for quality and originality in the time of robots
wayneb77
1
110
Transcript
Confusion Matrix Explained Samuel Bohman
What is a Confusion Matrix? A common method for describing
the performance of a classification model consisting of true positives, true negatives, false positives, and false negatives. It is called a confusion matrix because it shows how confused the model is between the classes.
True Positives Predicted class Apple Orange Pear Actual class Apple
50 5 50 Orange 10 50 20 Pear 5 5 0 The model correctly classified 50 apples and 50 oranges.
True Negatives for Apple The model correctly classified 75 cases
as not belonging to class apple. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0
True Negatives for Orange The model correctly classified 105 cases
as not belonging to class orange. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0
True Negatives for Pear The model correctly classified 115 cases
as not belonging to class pear. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0
False Positives for Apple The model incorrectly classified 15 cases
as apples. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0
False Positives for Orange The model incorrectly classified 10 cases
as oranges. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0
False Positives for Pear The model incorrectly classified 70 cases
as pears. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0
False Negatives for Apple The model incorrectly classified 55 cases
as not belonging to class apple. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0
False Negatives for Orange The model incorrectly classified 30 cases
as not belonging to class orange. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0
False Negatives for Pear The model incorrectly classified 10 cases
as not belonging to class pears. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0