Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Confusion Matrix Explained
Search
Samuel Bohman
October 24, 2017
Science
0
70
Confusion Matrix Explained
This slide deck explains what a confusion matrix is and how to interpret it.
Samuel Bohman
October 24, 2017
Tweet
Share
Other Decks in Science
See All in Science
【論文紹介】Is CLIP ideal? No. Can we fix it?Yes! 第65回 コンピュータビジョン勉強会@関東
shun6211
5
2.1k
風の力で振れ幅が大きくなる振り子!? 〜タコマナローズ橋はなぜ落ちたのか〜
syotasasaki593876
1
170
ランサムウェア対策にも考慮したVMware、Hyper-V、Azure、AWS間のリアルタイムレプリケーション「Zerto」を徹底解説
climbteam
0
180
データマイニング - ウェブとグラフ
trycycle
PRO
0
210
凸最適化からDC最適化まで
santana_hammer
1
340
Ignite の1年間の軌跡
ktombow
0
190
2025-06-11-ai_belgium
sofievl
1
210
2025-05-31-pycon_italia
sofievl
0
120
データマイニング - コミュニティ発見
trycycle
PRO
0
190
Kaggle: NeurIPS - Open Polymer Prediction 2025 コンペ 反省会
calpis10000
0
270
タンパク質間相互作⽤を利⽤した⼈⼯知能による新しい薬剤遺伝⼦-疾患相互作⽤の同定
tagtag
0
120
データベース05: SQL(2/3) 結合質問
trycycle
PRO
0
860
Featured
See All Featured
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
47k
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
0
190
Accessibility Awareness
sabderemane
0
15
Embracing the Ebb and Flow
colly
88
4.9k
GraphQLとの向き合い方2022年版
quramy
50
14k
Testing 201, or: Great Expectations
jmmastey
46
7.8k
GitHub's CSS Performance
jonrohan
1032
470k
Collaborative Software Design: How to facilitate domain modelling decisions
baasie
0
94
Practical Orchestrator
shlominoach
190
11k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
The Cult of Friendly URLs
andyhume
79
6.7k
Transcript
Confusion Matrix Explained Samuel Bohman
What is a Confusion Matrix? A common method for describing
the performance of a classification model consisting of true positives, true negatives, false positives, and false negatives. It is called a confusion matrix because it shows how confused the model is between the classes.
True Positives Predicted class Apple Orange Pear Actual class Apple
50 5 50 Orange 10 50 20 Pear 5 5 0 The model correctly classified 50 apples and 50 oranges.
True Negatives for Apple The model correctly classified 75 cases
as not belonging to class apple. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0
True Negatives for Orange The model correctly classified 105 cases
as not belonging to class orange. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0
True Negatives for Pear The model correctly classified 115 cases
as not belonging to class pear. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0
False Positives for Apple The model incorrectly classified 15 cases
as apples. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0
False Positives for Orange The model incorrectly classified 10 cases
as oranges. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0
False Positives for Pear The model incorrectly classified 70 cases
as pears. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0
False Negatives for Apple The model incorrectly classified 55 cases
as not belonging to class apple. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0
False Negatives for Orange The model incorrectly classified 30 cases
as not belonging to class orange. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0
False Negatives for Pear The model incorrectly classified 10 cases
as not belonging to class pears. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0