Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Confusion Matrix Explained
Search
Samuel Bohman
October 24, 2017
Science
0
67
Confusion Matrix Explained
This slide deck explains what a confusion matrix is and how to interpret it.
Samuel Bohman
October 24, 2017
Tweet
Share
Other Decks in Science
See All in Science
高校生就活へのDA導入の提案
shunyanoda
0
300
統計的因果探索: 背景知識とデータにより因果仮説を探索する
sshimizu2006
4
920
Valuable Lessons Learned on Kaggle’s ARC AGI LLM Challenge (PyDataGlobal 2024)
ianozsvald
0
390
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
1
450
地質研究者が苦労しながら運用する情報公開システムの実例
naito2000
0
210
KH Coderチュートリアル(スライド版)
koichih
1
41k
Symfony Console Facelift
chalasr
2
450
機械学習 - SVM
trycycle
PRO
1
840
機械学習 - DBSCAN
trycycle
PRO
0
900
SpatialBiologyWestCoastUS2024
lcolladotor
0
140
Lean4による汎化誤差評価の形式化
milano0017
1
230
Iniciativas independentes de divulgação científica: o caso do Movimento #CiteMulheresNegras
taisso
0
1.5k
Featured
See All Featured
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
710
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Speed Design
sergeychernyshev
32
1k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
A better future with KSS
kneath
239
17k
Docker and Python
trallard
44
3.4k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
48
2.9k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
124
52k
Making Projects Easy
brettharned
116
6.3k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.3k
Practical Orchestrator
shlominoach
188
11k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
357
30k
Transcript
Confusion Matrix Explained Samuel Bohman
What is a Confusion Matrix? A common method for describing
the performance of a classification model consisting of true positives, true negatives, false positives, and false negatives. It is called a confusion matrix because it shows how confused the model is between the classes.
True Positives Predicted class Apple Orange Pear Actual class Apple
50 5 50 Orange 10 50 20 Pear 5 5 0 The model correctly classified 50 apples and 50 oranges.
True Negatives for Apple The model correctly classified 75 cases
as not belonging to class apple. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0
True Negatives for Orange The model correctly classified 105 cases
as not belonging to class orange. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0
True Negatives for Pear The model correctly classified 115 cases
as not belonging to class pear. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0
False Positives for Apple The model incorrectly classified 15 cases
as apples. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0
False Positives for Orange The model incorrectly classified 10 cases
as oranges. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0
False Positives for Pear The model incorrectly classified 70 cases
as pears. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0
False Negatives for Apple The model incorrectly classified 55 cases
as not belonging to class apple. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0
False Negatives for Orange The model incorrectly classified 30 cases
as not belonging to class orange. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0
False Negatives for Pear The model incorrectly classified 10 cases
as not belonging to class pears. Predicted class Apple Orange Pear Actual class Apple 50 5 50 Orange 10 50 20 Pear 5 5 0