Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
日本語: Skinny Controllers, Skinny Models #m3dev
Search
Kazuhiro Sera
July 05, 2013
Technology
1
170
日本語: Skinny Controllers, Skinny Models #m3dev
7 つの実装パターンと Code Climate を使った実際のリファクタリング実践の紹介です。
Kazuhiro Sera
July 05, 2013
Tweet
Share
More Decks by Kazuhiro Sera
See All by Kazuhiro Sera
5 tips to build long-lasting Scala OSS (cont’d)
seratch
0
120
5 tips to build long-lasting Scala OSS
seratch
1
180
ScalikeJDBC / Skinny ORM Beginners' Guide
seratch
5
130k
All I learned while working on a Scala OSS project for over six years #ScalaMatsuri
seratch
1
890
What I learned by creating 'Scala on Rails' #trbmeetup
seratch
0
190
Scala on Rails @ Scalae by the Bay 2016 #scalae
seratch
1
1.1k
Contributing to Scala OSS from East Asia #ScalaMatsuri
seratch
0
1.2k
Skinny 2 Update
seratch
0
120
Future on Servlet #scala_ks
seratch
0
540
Other Decks in Technology
See All in Technology
「手を動かした者だけが世界を変える」ソフトウェア開発だけではない開発者人生
onishi
11
4.2k
室長の逆襲 :データ活用の陣地を増やすためのヒント
masatoshi0205
0
180
増え続ける脆弱性に立ち向かう: 事前対策と優先度づけによる 持続可能な脆弱性管理 / Confronting the Rise of Vulnerabilities: Sustainable Management Through Proactive Measures and Prioritization
nttcom
1
160
20250719_JAWS_kobe
takuyay0ne
1
160
ゼロから始めるSREの事業貢献 - 生成AI時代のSRE成長戦略と実践 / Starting SRE from Day One
shinyorke
PRO
0
230
claude codeでPrompt Engineering
iori0311
0
440
MCPに潜むセキュリティリスクを考えてみる
milix_m
1
720
機械学習を「社会実装」するということ 2025年夏版 / Social Implementation of Machine Learning July 2025 Version
moepy_stats
1
590
地図と生成AI
nakasho
0
700
MCP とマネージド PaaS で実現する大規模 AI アプリケーションの高速開発
nahokoxxx
1
1.4k
Webの技術とガジェットで那須の子ども達にワクワクを! / IoTLT_20250720
you
PRO
0
120
激動の時代、新卒エンジニアはAIツールにどう向き合うか。 [LayerX Bet AI Day Countdown LT Day1 ツールの選択]
tak848
0
540
Featured
See All Featured
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Faster Mobile Websites
deanohume
308
31k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.4k
Docker and Python
trallard
45
3.5k
GraphQLとの向き合い方2022年版
quramy
49
14k
Building an army of robots
kneath
306
45k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
760
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.6k
Done Done
chrislema
184
16k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
8
370
Transcript
4LJOOZ$POUSPMMFST 4LJOOZ.PEFMT .5FDI5BMLNEFW ,B[VIJSP4FSB!TFSBUDI
3VCZ,BJHJ • -5͠·ͨ͠ʢSTQFDLJDLTUBSUFSʣ • ੮ʹͬͨΒ(FNpMFʹՃʂ • ࠓl3FGBDUPSJOH'BU.PEFMTXJUI 1BUUFSOTzͱ͍͏ߨԋͷ༰ͱͦͷ࣮ફʹ ͍ͭͯհ͠·͢ •
ڵຯΛ࣋ͬͨํɺಈը͕ެ։͞Ε͍ͯΔ ͷͰޙͰ؍ͯΈ͍ͯͩ͘͞ IUUQTWJNFPDPN
None
!CSZOBSZ • #SZBO)FMNLBNQ • $PEF$MJNBUFۀऀ • ސ٬ͷ3VCZίʔυΛղੳ࣭ͯ͠ɾη ΩϡϦςΟվળΛࢧԉ͢ΔαʔϏε • 044ͳΒແྉɺҎԼ(JTUVCͷྫ
• IUUQTDPEFDMJNBUFDPNHJUIVC TFSBUDIHJTUVC
$PEF$MJNBUF3BUJOH
$PEF$MJNBUF$PEF4NFMM
$PEF$MJNBUF$MBTTFT
ϒϩάΤϯτϦ • 1BUUFSOTUP3FGBDUPS'BU"DUJWF3FDPSE .PEFMT • IUUQCMPHDPEFDMJNBUFDPNCMPH XBZTUPEFDPNQPTFGBU BDUJWFSFDPSENPEFMT • ͞Βʹվળ͞ΕͨίʔυྫΛ(JU)VCͰެ։
͍ͯ͠Δʢ3VCZ,BJHJͰͷൃදͰ༻ʣ • IUUQTHJUIVCDPNDPEFDMJNBUF SFGBDUPSJOHGBUNPEFMT
3BJMT"DUJWF3FDPSE • 1SPγϯϓϧ͞ • $PO%#ͷςʔϒϧͱΛڧ͍ΒΕΔ
3BJMTΞϓϦͰͷࣦഊྫ • దʹσβΠϯ͞ΕͨΦϒδΣΫτࢦͷ ίʔυϥϏΦϦʹྫ͑ΒΕΔ • ࣌ંɺΧϧκʔωΈ͍ͨʹҰΧॴʹ٧Ίࠐ Μͩ3BJMTίʔυΛݟ͔͚Δɾɾ
4LJOOZ.PEFMT • 'BU.PEFMTͱΑ͘ݴΘΕΔ͕.PEFM 4LJOOZͰ͋Δ͖ͳΜͰʁ
'BU.PEFMTͱͷઓ͍ • $POUSPMMFS͕ංେԽ͢ΔΑΓϚγʁ • طଘͷ"3 "DUJWF3FDPSE NPEFMʹ Λ͍࣋ͨͤͯ͘ͱͲΜͲΜංେԽ • ࠷ѱͷέʔεਆΦϒδΣΫτ͕ੜ
• !CSZOBSZɺఆ൪ͷ࣮ύλʔϯΛ͏· ͘3BJMTͷNPEFMͷϦϑΝΫλϦϯάʹ ద༻͢Δํ๏ΛఏҊ͍ͯ͠Δ
Ξϯνύλʔϯ • ͨͩ͠ɺ҆қʹNJYJOͱͯ͠NPEVMFʹ Γग़͢ͷΞϯνύλʔϯ • NJYJOܗΛม͑ͨܧঝ • ͕Βͨ͘ΛಥͬࠐΉҾ͖ग़͠ʢίʔυΛ NPEVMFʹҠͯ͠JODMVEF͢Δ͚ͩʣ •
ͨ͘͞ΜNJYJO͞ΕͨDMBTTͩͱͲΜͳ ΦϒδΣΫτ͔Ѳ͢Δͷ͕େมʹͳΔ
ͭͷ࣮ύλʔϯ • 7BMVF0CKFDUT • 4FSWJDF0CKFDUT • 'PSN0CKFDUT • 2VFSZ0CKFDUT •
7JFX0CKFDUT • 1PMJDZ0CKFDUT • %FDPSBUPST
7BMVF0CKFDUT • ͓ͳ͡Έ7BMVF0CKFDU • JNNVUBCMFͳΛอ࣋͢ΔΫϥε • อ࣋͢ΔʹΑͬͯൺֱՄೳ • ԿΒ͔ͷϩδοΫΛ࣋ͭBUUSJCVUFʢ·ͨ ͦͷখ͞ͳू߹ʣ͕ద͍ͯ͠Δ
• ۩ମྫɿ1IPOF/VNCFSɺ.POFZɺ 3BUJOHͳͲ
4FSWJDF0CKFDUT • ෳͷNPEFMΛར༻͢Δ߹ • ֎෦ͷαʔϏεɺ"1*ͱ࿈ܞ͢Δ߹ • ෳࡶͳϩδοΫΛ࣮͢Δ߹ • طଘͷNPEFMͷओͨΔͰͳ͍߹ •
4USBUFHZύλʔϯΛద༻͍ͨ͠߹ • ී௨"DUJWF.PEFMͰͳ͍
'PSN0CKFDUT • ҰͭͷϑΥʔϜͰෳͷ"3NPEFMΛߋ ৽͍ͨ͠߹ʹ༗ޮ • "DUJWF.PEFMʹ͢Δ • 'PSNͷTBWFͷ෦Ͱෳͷ"3NPEFM ͷTBWFΛݺͼग़͢ •
ඪ४ͷBDDFQUT@OFTUFE@BUUSJCVUFT@GPS !CSZOBSZతʹඇਪ • ෳࡶʹͳͬͨΒӬଓԽॲཧΛ4FSWJDFʹ
2VFSZ0CKFDUT • όον༻PSෳࡶͳ݅ͷ42-Λ"3ͷ TDPQFΫϥεϝιουʹͤͣ2VFSZ 0CKFDUͱͯ͠ • ॳظԽ࣌ʹ"33FMBUJPOΦϒδΣΫτΛ ͢Α͏ʹ͢Δͱ߹ՄೳʹͳΔ • 5SJBM2VFSZOFX
"DDPVOUXIFSF ʜ pO E@FBDIEPcFcʜFOE
7JFX0CKFDUT • 7JFXͷͨΊͷϩδοΫΛ"3NPEFMʹ ॻ͔ͳ͍ʢΤϥʔϝοηʔδੜͳͲʣ • "3NPEFMΛอ࣋͢ΔΫϥεΛఆٛ͠ SFOEFSʹͪ͜ΒΛ͢Α͏ʹ͢Δ • IFMQFSʹ"3NPEFMΛ࣮͢ΑΓɺ ϦϑΝΫλϦϯά͕ଅਐ͞ΕΔ
• ଟ༷ͳ6*ʹରԠ͢Δ߹ʹ༗ޮ
1PMJDZ0CKFDUT • "3NPEFMΛࢀর͢Δ͕ओͨΔυϝΠ ϯͰͳ͍ϩδοΫʢੳͷͨΊͷఆ ͳͲʣΛ͢Δ • ྫɿϝʔϧ৴ରʁΞΫςΟϒϢʔβʁ • "3NPEFMΛอ࣋͢ΔΫϥεͱͯ͠ఆٛ •
ଞͱͷҧ͍ɿ1PMJDZSFBEͳॲཧ͚ͩ 4FSWJDFXSJUFؚΉɺ2VFSZ42- ࣮ߦͱSFTVMUTFUΛZJFMEʹ͚ͩ͢
%FDPSBUPST • %FDPSBUPSύλʔϯΛద༻ͯ͠DBMMCBDL ࠈΛճආ͢Δ • ྫɿTBWFϝιουΛचͭͳ͗ʹ͢Δ ʢ"3ͷ0SEFSTBWFͰPSEFSTςʔϒϧ ʹJOTFSU%)8ʹ௨डྃ ϝʔϧΛૹ৴ʣ
࣮ફͯ͠Έͨ • ࣮ࡍʹύλʔϯΛͬͯ(JTUVCͷϦϑΝ ΫλϦϯάΛͯ͠Έͨ
ύλʔϯΛ࣮ફ͢Δલ
ύλʔϯΛ࣮ફͨ͠ޙ
ͬͨ͜ͱ • ͬͨύλʔϯ4FSWJDF0CKFDUT͚ͩ • ୯ʹ$POUSPMMFS͔Β4FSWJDFʹΓग़͠ ͚ͨͩͩͱɺࠓͦͷ৽͍͠4FSWJDF ͷείΞ͕ѱ͔ͬͨʢͨΓલʣ • ෳࡶͷߴ͗͢ΔϝιουΛ໊લΛ͚ ΒΕΔ୯Ґʹׂ
• ίʔυͷॏෳΛڞ௨Խ
վળͷաఔ
ࠓ͔Βग़དྷΔ͜ͱ • తʹ"3ͷΫϥεϝιουʹ͠ͳ͍ • "3Ͱͳ͍ϞσϧͲΜͲΜͭ͘Δ • $POUSPMMFSʹ"3NPEFMݺͼग़͠Λζϥ ζϥॻ͘ΑΓ4FSWJDFʹ͢Δ • ෳࡶͳϑΥʔϜ'PSNΛಋೖ͢Δ
• "3ʹදࣔ༻ϩδοΫΛ࣋ͨͣ7JFX 0CKFDUͰϥοϓͯ͠දࣔॲཧʹ͢
·ͱΊ • طʹ࣮ફ͞Ε͍ͯΔͷଟ͍͕ɺύλʔ ϯʹ໊લ͕͍ͭͯݴޠԽ͞ΕΔ͜ͱେࣄ • ࠷ॳγϯϓϧͰΑ͍ʢύλʔϯͷΓ͢ ͗PWFSFOHJOFFSJOHʣ • ΞϓϦ͕ҭ͍ͬͯ͘தͰنʹԠͨ͡Ϧ ϑΝΫλϦϯάඞཁʹͳ͍ͬͯ͘
• ͨͩ͠ɺेͳίʔυΧόϨοδඞਢ
ΞϓϦنͱΞʔΩςΫνϟ
2" .5FDI5BMLNEFW ,B[VIJSP4FSB!TFSBUDI "OZ2VFTUJPO