Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Web Scale with NoSQL
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Sergejus
April 09, 2011
Technology
1
85
Web Scale with NoSQL
Sergejus
April 09, 2011
Tweet
Share
More Decks by Sergejus
See All by Sergejus
Bringing Developers to the Next Level
sergejusb
0
220
True story of re-architecting website for scale on Windows Azure
sergejusb
1
67
Continuous Happiness by Continuous Delivery
sergejusb
2
3.9k
Windows Azure from practical point of view
sergejusb
1
72
Windows Azure Web Sites: new cloud hosting offering
sergejusb
2
72
Intro to Big Data using Hadoop
sergejusb
2
130
Optimizing ASP.NET application performance: tough but necessary
sergejusb
2
62
Release Often, Release Safely
sergejusb
1
44
NoSQL – What’s that.pdf
sergejusb
1
71
Other Decks in Technology
See All in Technology
Amazon Bedrock Knowledge Basesチャンキング解説!
aoinoguchi
0
140
Bill One 開発エンジニア 紹介資料
sansan33
PRO
5
17k
ClickHouseはどのように大規模データを活用したAIエージェントを全社展開しているのか
mikimatsumoto
0
230
Data Hubグループ 紹介資料
sansan33
PRO
0
2.7k
Tebiki Engineering Team Deck
tebiki
0
24k
制約が導く迷わない設計 〜 信頼性と運用性を両立するマイナンバー管理システムの実践 〜
bwkw
3
940
コスト削減から「セキュリティと利便性」を担うプラットフォームへ
sansantech
PRO
3
1.5k
量子クラウドサービスの裏側 〜Deep Dive into OQTOPUS〜
oqtopus
0
120
Amazon S3 Vectorsを使って資格勉強用AIエージェントを構築してみた
usanchuu
3
450
Red Hat OpenStack Services on OpenShift
tamemiya
0
110
ブロックテーマ、WordPress でウェブサイトをつくるということ / 2026.02.07 Gifu WordPress Meetup
torounit
0
180
Introduction to Sansan, inc / Sansan Global Development Center, Inc.
sansan33
PRO
0
3k
Featured
See All Featured
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Unlocking the hidden potential of vector embeddings in international SEO
frankvandijk
0
170
Site-Speed That Sticks
csswizardry
13
1.1k
The Cost Of JavaScript in 2023
addyosmani
55
9.5k
What the history of the web can teach us about the future of AI
inesmontani
PRO
1
430
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
66
Groundhog Day: Seeking Process in Gaming for Health
codingconduct
0
93
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
52k
Technical Leadership for Architectural Decision Making
baasie
1
240
AI: The stuff that nobody shows you
jnunemaker
PRO
2
260
Thoughts on Productivity
jonyablonski
74
5k
We Have a Design System, Now What?
morganepeng
54
8k
Transcript
Web Scale with NoSQL Sergejus Barinovas (@sergejusb) http://sergejus.blogas.lt
None
Who Am I? Architect at Running NoSQL servers
in production Blogger (http://sergejus.blogas.lt, @sergejusb) Community member (http://dotnetgroup.lt) Contact me via
[email protected]
Powered by RDBMS Used everywhere… …even where it
shouldn’t Used for 30+ years!
Back to 1980’s…
Data boom
in numbers 600 000 000 users 30 000
servers 20+ TB raw data per day >20 PB stored data
You really think they use RDBMS?
RDBMS Scaling Example
Simple usage Customers Reads / Writes master
Scale reads Customers master slave slave
Scale writes Customers [A-M] master master Customers [N-Z]
Scale reads / writes Customers [A-M] master slave slave master
Customers [N-Z] slave slave
Pray your system won’t fail
None
Why NoSQL Limited SQL scalability Sharding and vertical
partitioning Limited SQL availability Master / slave configuration Limited SQL speed of read operations Multiple read replicas SQL limitations for huge amount of data Key / value / type columns
NoSQL history 2009, Eric Evans, no:sql(est) NoSQL –
open source distributed databases, not relational SQL databases NoSQL – not only SQL NoSQL → Big Data
NoSQL characteristics (1/2) Scalability The ability to horizontally
scale simple- operation throughput over many servers BASE A “weaker” concurrency model than the ACID transactions in most SQL systems
NoSQL characteristics (2/2) Distributed Efficient use of distributed
indexes and RAM for data storage Schema-less The ability to dynamically define new attributes or data schema
CAP theorem 2000, Eric Brewer It is impossible
for a distributed computer system to simultaneously provide all three of the following guarantees: Consistency Availability Partition tolerance
None
NoSQL Databases
NoSQL categories Key / value store Document database
Graph database Columnar database
Key / value store <key, value> or Tuple<key, v1,.
., vn> Simple operations Get Put Delete Byte[] Byte[] Key Value
Key / value store Key Value “current_date” 2013.02.01 “sergejusb” Binary
Object “sergejusb” JSON Object
Key / value stores Redis (+)messaging (-)no
shards Voldermort Membase (+)memcache interface Riak
Document database Document == complex object XML
YAML JSON / BSON Support for secondary indexes Schema can be defined at runtime Optional support for simple querying using Map / Reduce
Document databases MongoDB (+)shards CouchDB (+)master
/ master replication
Graph database Graph == network Basic constructs
Node Edge Properties sergejus sergejus.blogas.lt tdagys knows knows
Graph databases Neo4j (-)paid version required for scaling
FlockDB (+)fast (-)limited functionality
Columnar database For HUGE amount of data Columns
are added at a runtime Great scalability Horizontal Vertical
Columnar database Unusual data model Key Space →
Database Column Family → Table Columns and Super Columns Super Column → array of Columns Column → Tuple<Key, Value, Timestamp, TTL>
Columnar database Simple column
Columnar database Simple column
Columnar database Cassandra (+)easy scalable HBase
(+)consistent (+)part of Hadoop Hypertable
NoSQL is Cool! But…
None
NoSQL limitations ORDER BY ? Natural key order
GROUP BY ? Map / Reduce* JOIN ? Multiple Map / Reduce* SELECT * ? Multi-machine Map / Reduce* *if possible
NoSQL Limitations Maturity Tooling Specificity
SQL vs. NoSQL Choose the right tool for the
task You can use BOTH
Thank you! Sergejus Barinovas (@sergejusb)
[email protected]
http://sergejus.blogas.lt