Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
"진짜 되는" 투자 전략 찾기: 금융전략과 통계적 검정
Search
Beomjun Shin
July 23, 2016
Research
0
80
"진짜 되는" 투자 전략 찾기: 금융전략과 통계적 검정
2016년 7월 23일, 퀀트 스터디 그룹 발표 자료
Beomjun Shin
July 23, 2016
Tweet
Share
More Decks by Beomjun Shin
See All by Beomjun Shin
Convolution Transpose by yourself
shastakr
0
77
ML Productivity
shastakr
1
79
스마트폰 위의 딥러닝
shastakr
0
270
Design your CNN: historical inspirations
shastakr
0
35
Other Decks in Research
See All in Research
電通総研の生成AI・エージェントの取り組みエンジニアリング業務向けAI活用事例紹介
isidaitc
1
940
cvpaper.challenge 10年の軌跡 / cvpaper.challenge a decade-long journey
gatheluck
3
310
20250624_熊本経済同友会6月例会講演
trafficbrain
1
610
AlphaEarth Foundations: An embedding field model for accurate and efficient global mapping from sparse label data
satai
1
200
Agentic AIとMCPを利用したサービス作成入門
mickey_kubo
0
530
AIによる画像認識技術の進化 -25年の技術変遷を振り返る-
hf149
7
4k
Submeter-level land cover mapping of Japan
satai
3
290
「どう育てるか」より「どう働きたいか」〜スクラムマスターの最初の一歩〜
hirakawa51
0
860
AIグラフィックデザインの進化:断片から統合(One Piece)へ / From Fragment to One Piece: A Survey on AI-Driven Graphic Design
shunk031
0
440
SSII2025 [TS3] 医工連携における画像情報学研究
ssii
PRO
2
1.3k
カスタマーサクセスの視点からAWS Summitの展示を考える~製品開発で活用できる勘所~
masakiokuda
2
190
SegEarth-OV: Towards Training-Free Open-Vocabulary Segmentation for Remote Sensing Images
satai
3
170
Featured
See All Featured
The Cost Of JavaScript in 2023
addyosmani
53
8.9k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
51
5.6k
Building Adaptive Systems
keathley
43
2.7k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.4k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
188
55k
Speed Design
sergeychernyshev
32
1.1k
Making the Leap to Tech Lead
cromwellryan
135
9.5k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Imperfection Machines: The Place of Print at Facebook
scottboms
268
13k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
6k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
131
19k
How GitHub (no longer) Works
holman
315
140k
Transcript
" غח" ై ۚ ӝ Әਲ਼ۚҗ ా҅ Ѩ July 23,
2016 नߧળ © Quant Study, Beomjun Shin, July 23, 2016
௫ ୡࠁ ੌੌ 1. (ಂఠ࠙ࢳ) ࣻহח ߎਸ ࢜ݴ ߸ࣻܳ ݃ҳ
߸ഋ೧ࠄ 2. Ӓۧѱ ݆ࣻ ۚ(?)ਸ ٜ݅ѱ ػ 3. ߮݃ب ޅӝח ٜۚী ઝೠ -> द ബਯੌѢঠ..(?) 4. যו ࣽр 10֙ ־ ࣻܫ 160% ب ҡଳই ࠁח ۚ ߊѼೠ 5. (оࢸѨ&पࢸ҅) ৬৬! Ӕؘ Ѣ Ҋ ై೧ب غա...??? © Quant Study, Beomjun Shin, July 23, 2016
(ಎ؊ݭణ) ߸ࣻܳ যڌѱ ࢎਊೞ? [߸ࣻ]ܳ [ӝ]۽ [߸ഋ]೧ ࠁҊ [ҙ]ীࢲ [ஏӝр]݅ఀ
ࠁਬ • ߸ࣻ: Value, Momentum, Quality • ӝ: 1ѐਘ, 1௪ఠ(=3ѐਘ), 1֙, 3~5֙ • ߸ഋ: пઙ زಣӐ, ݽݭథ, Valua9on Model • ҙ: Loser-Follow(contrarian), Winner-Follow • ஏӝр: 1ѐਘ, 1௪ఠ(=3ѐਘ), 1֙, 3~5֙ © Quant Study, Beomjun Shin, July 23, 2016
৬! ҡଳই ࠁח ۚ! © Quant Study, Beomjun Shin, July
23, 2016
Mul$ple Tes$ng Problem © Quant Study, Beomjun Shin, July 23,
2016
प ٘ SP500_YEARLY_VOL = 0.15 LENGTH = 252*10 SIZE =
100 DATEINDEX = pd.date_range(start="2011-01-01", periods=LENGTH) normal_walks = pd.DataFrame() for n in range(SIZE): normal_walks[n] = pd.Series( (np.random.normal( loc=0, scale=SP500_YEARLY_VOL / np.sqrt(252), size=(LENGTH, 1) ) + 1).cumprod(), index=DATEINDEX ) -> ࣻܫ 160%ח 100ߣ ೧ࠁݶ 1ߣ աৢ ࣻ ߆ী হ!1 1 ࣻܫ Normalਸ ٮܲҊ о, 10֙ زউ ైೠҊ о, S&P 500 ࣻળ Vola0lityܳ ࢎਊೣ © Quant Study, Beomjun Shin, July 23, 2016
೧Ѿ ߑߨ ? © Quant Study, Beomjun Shin, July 23,
2016
Sta$s$cs & Good Experiment Design! © Quant Study, Beomjun Shin,
July 23, 2016
ݾର • оࢸѨҗ पࢸ҅ • In-Sample ࠙ࢳ • p-value ৬
Mul/ple Tes/ng Problem ೖೞӝ • In/Out-Sample ࠙ࢳ • ಂఠ ࠙ࢳ • ೠ ߮݃ ࢸ • N࠙ਤ ࠙ࢳ प೯ © Quant Study, Beomjun Shin, July 23, 2016
ా҅ ӝࠄ ਊয • ా҅(sta&s&cs)? • ࠄ(sample)۽ࠗఠ ݽױ(popula&on)ਸ ਬ୶ೞח Ѫ
• ా҅(sta&s&c)? • ݽױ ౠਸ ୶ೞӝ ਤ೧ ࢠ۽ࠗఠ ҅ೞח ӏ • ࠄ࠙ನ(sampling distribu&on)? • ా҅(sta&s&c) ഛܫ࠙ನ • ࠄ࠙ನо ਃೞ. © Quant Study, Beomjun Shin, July 23, 2016
ా҅ োण • ୡҗ ࣻܫ(Excess Return)ী ೠ ୶ਸ ೧ࠁ •
о1: ୡҗ ࣻܫ ӏ࠙ನܳ ٮܲ • о2: ࢠ ࣻ(୨ োب ࣻ) n • ഛܫ߸ࣻ • ా҅(sta,s,c) ח ਬب ੋ t-࠙ನ(ࠄ࠙ನ;sampling distribu,on)ਸ ٮܴ ঌ۰ઉ • ҙणਵ۽ Әਲ਼ীࢶ t-sta,s,c 2ܳ ֈযঠ ࢎਊೞחѦ۽ ߉ই٘۰ © Quant Study, Beomjun Shin, July 23, 2016
ӏ࠙ನܳ ٮܰחо? © Quant Study, Beomjun Shin, July 23, 2016
p-value = type 1 error def. sta)s)c > cri)cal value
or significance level > p-value © Quant Study, Beomjun Shin, July 23, 2016
power = 1 - type 2 error def. sta)s)c >
cri)cal value © Quant Study, Beomjun Shin, July 23, 2016
Type 1 Error, Type 2 Error © Quant Study, Beomjun
Shin, July 23, 2016
Low p-value or High p-value in Stock Return? © Quant
Study, Beomjun Shin, July 23, 2016
T ా҅җ ࢥ࠺ਯ 2 2 r yearly returnۄ о, daily
return ܳ ғೞৈ োਯചػ ࢥ࠺ਯ۽ ࢎਊ. ݽ؛ Return, ח ߮݃ Return © Quant Study, Beomjun Shin, July 23, 2016
ୡҗࣻ ઓೞחо? • ӈޖоࢸ: ୡҗࣻ হ ( ) = 'ژ
ۚ'ۄ ೞ • ݀оࢸ: ୡҗࣻ ( ) = 'ঌ ۚ'ۄ ೞ © Quant Study, Beomjun Shin, July 23, 2016
ҡଳই ࠁח(?) ۚ оࢸѨ from scipy.stats import t nyears =
10 yearly_sharpe = 0.75 tstat = yearly_sharpe * np.sqrt(nyears) pvalue = 1 - t.cdf(tstat, df=9) print(tstat, pvalue) # => 2.37170824513 0.0208959003886 • p-value: 2% • Ѣ ೧ࢳ: ঌۚۄҊ ೠ ۚ ঌۚੌ ഛܫ 98% • ଵػ ೧ࢳ1: ژۚੋؘ ঌۚۄҊ ೡ ഛܫ 2% • ଵػ ೧ࢳ2: ژۚੋؘ ژۚۄҊ ೡ ഛܫ 98% © Quant Study, Beomjun Shin, July 23, 2016
Base Rate=0.1 10ѐח ঌۚ, 90ѐח ژۚ ©
Quant Study, Beomjun Shin, July 23, 2016
Sta$s$cal Power=0.8 10ѐ ঌۚ ୶ஏ ঌۚ
8ѐ © Quant Study, Beomjun Shin, July 23, 2016
P-value=0.02 90ѐ ژۚ ୶ஏ ঌۚ ѐ ©
Quant Study, Beomjun Shin, July 23, 2016
Python Code N = 100 base_rate = 0.10 alpha =
0.02 beta = 0.2 contingency_table = pd.DataFrame( [ [ N*base_rate*(1-beta), # pred ঌ, real ঌ N*base_rate*beta # pred ঌ, real ژ ], [ N*(1-base_rate)*alpha, # pred ژ, real ঌ N*(1-base_rate)*(1-alpha) # pred ژ, real ژ ] ], index=pd.Series(["ঌۚ", "ژۚ"], name="True"), columns=pd.Series(["ঌۚ", "ژۚ"], name="Pred")) fdr = contingency_table.iloc[1, 0] / contingency_table.iloc[:, 0].sum() print("FDR:", fdr) contingency_table © Quant Study, Beomjun Shin, July 23, 2016
Con$ngency Table © Quant Study, Beomjun Shin, July 23, 2016
P-value © Quant Study, Beomjun Shin, July 23, 2016
Power © Quant Study, Beomjun Shin, July 23, 2016
False Discovery Rate © Quant Study, Beomjun Shin, July 23,
2016
P-valueী ೠ ೧ࢳ द ܻ • [ঌۚۄҊ ೠ ۚ ژۚੌ
ഛܫ] [2%] [X] • [ঌۚۄҊ ೠ ۚ ژۚੌ ഛܫ] False Discovery Rate(FDR)۽ [O] • [ژۚਸ ঌۚۄҊ ೡ ഛܫ] [2%] [O] • FDRਸ ஶ܀ೞח Ѫ ਃפ. © Quant Study, Beomjun Shin, July 23, 2016
Mul$ple Tes$ng Problem ࢎ۹1: ۨ٬ ۚী 100ѐ ےؒ ߸ചܳ
Ҋ ਗې ۚҗ P&L ਸ 2-sample t-test ೠҊ ೞ. 100ѐ ےؒ߸ചо ࠗ ޖೠ ࢚ട (base rate = 0)ীب p-valueܳ 5% ࣻળਵ۽ ౸ױೞݶ 5ѐח ਬೞѱ աৢ Ѫ. Ӓۧݶ Ӓ 5ѐ ۚਵ۽ ైೞݶ غחо? NO! ࢎ۹2: ୭Ҋ ై غח ߑߨ, 10000ݺ Ҋёীѱ Ӓ ߈ ղੌ झೖо য়ܲҊ ݫੌਸ ࠁղҊ աݠ ߈ ߈۽ ஏ Ѿҗܳ ࠁմ. Ѧ 10ߣ ߈ࠂೞݶ 10ݺ ҊёীѲ ղо 10ߣ ݽف ݏ ࣅ ػ. դ ୭ Ҋ ైੋо? NO! © Quant Study, Beomjun Shin, July 23, 2016
೧Ѿೞח 2о ҙ • Family-Wise Error Rate(FWER) • ੋ ҙীࢲ
ױ 1ѐ type 1 errorо ߊࢤೞח Ѫب ೲਊೞ ঋח • 100ѐ పझա 10000ѐ పझա ױ 1ѐ type 1 errorب ߊࢤೞݶ উػ • False Discovery Rate(FDR) • ࠺ਯ ҙীࢲ type 1 errorо ߊࢤೞחѦ ೲਊೞ ঋח. • 100ѐ పझীࢲ 1ѐܳ ೲਊೞ ঋחݶ 10000ѐ పझীࢶ 100ѐܳ ೲ ਊೞ ঋח © Quant Study, Beomjun Shin, July 23, 2016
FWER: Bonferroni’s Correc2on • 1ѐ పझ: p-value 5% • 10ѐ
పझ: p-value 5% -> 5/10 % • 100ѐ పझ: p-value 5% -> 5/100 % ࢤп. • ైۚ ইಫ۽ ۽ંо ইפӝ ٸޙী ઑӘ ਬೞѱ ࠊب غ ঋਸө? • ݅ড Nߣ పझо completely uncorrelatedݶ ਤۢ ೧ب ؼ Ѫ, ೞ ݅ perfectly correlated غݶ ࢎप࢚ పझח Nߣ ইפۄ 1ߣೠ ࣅ ػ © Quant Study, Beomjun Shin, July 23, 2016
FWER: Holm-Bonferroni Method • ծ p-value ࠗఠ ֫ p-value ࣽਵ۽
۳ • kח పझ ੋؙझ, M పझ പࣻ, \alphaח significance level • sta6s6c ࠙ನܳ ࢎਊೞח ѐ֛ © Quant Study, Beomjun Shin, July 23, 2016
FDR: Benjamini and Hochberg, Yeku9eli(BHY) • ֫ p-value ࠗఠ ծ
p-value ࣽਵ۽ ۳ • о וटೠ ߑߨ • harvey৯, о ೞҊ ঌ۰ ߑߨ © Quant Study, Beomjun Shin, July 23, 2016
ਃড • • Mul%ple Tes%ng Problem & Solu%on • Interpret
p-value © Quant Study, Beomjun Shin, July 23, 2016
Walk-Forward Tes/ng © Quant Study, Beomjun Shin, July 23, 2016
Terms • (Sta&s&cs) In-sample(IS) Data / Out-of-sample(OOS) Data • (Machine
Learning) Training Data / Valida&on Data / Test Data / Cross-Valida&on © Quant Study, Beomjun Shin, July 23, 2016
Avoid Overlap Bias © Quant Study, Beomjun Shin, July 23,
2016
അप प ࢸ҅: ण হח ݽ؛ 1. ୭Ӕ N֙ ؘఠܳ
Out-of-sample(OOS) ؘఠ, աݠܳ In-sample(IS) ؘ ఠ۽ ܻ࠙೧ك 2. IS ؘఠܳ оҊ पਸ ߈ࠂೠ • प ߈ࠂ ۽ ݽ؛ ߸ച, ۄఠ ߸ച۽ ҳࢿػ • ಌನݢझܳ ҙೠ പࣻܳ ߈٘द ӝ۾ೠ 3. о જও؍ TOP n ѐ ݽഋਸ OOS ؘఠী पೠ 4. प ౠࢿ࢚ য়ߡೖী ݒ ਬ೧ঠೣਵ۽ पਸ ݆ ߈ࠂೞ ঋח © Quant Study, Beomjun Shin, July 23, 2016
അप प ࢸ҅: ण ח ݽ؛ 1. ୭Ӕ N֙ਸ प
ؘఠীࢲ ߓઁ೧ك(Holdout data;Test Data) 2. Walk Forward Tes9ng ۨ(ৈ۞ߥ IS/OSS ؘఠܳ )ਵ۽ పझܳ ߈ࠂೠ • Walk Forward Tes9ng ب ߈ࠂೞࠁݶ ѾҴ OSS ؘఠী য়ߡೖػ • ಌನݢझܳ ҙೠ പࣻܳ ߈٘द ӝ۾ೠ • प ߈ࠂ ۽ ݽ؛ ߸ച৬ ೞಌۄఠ ߸ച۽ ҳࢿػ 3. о જও؍ TOP n ѐ ݽഋਸ OOS ؘఠী पೠ © Quant Study, Beomjun Shin, July 23, 2016
୭Ҋ प Real Money Trading! © Quant Study, Beomjun Shin,
July 23, 2016
Common Evalua+on Metrics • t-sta&s&c; p-value • sharpe ra&o •
Annualized Return, Annual Vola)lity • CAGR • turnover • maxdrawdown © Quant Study, Beomjun Shin, July 23, 2016
Sharpe Ra)o details Risk-Free Rate (Variance is not affected by
constant) Benchmark © Quant Study, Beomjun Shin, July 23, 2016
Annualize Sharpe Ra/o © Quant Study, Beomjun Shin, July 23,
2016
Annualize Sharpe Ra/o • IID Return Assump.on(NO SERIAL COLLREATION! REAL?)
• Daily -> Yearly: • Monthly -> Yearly: © Quant Study, Beomjun Shin, July 23, 2016
Addi$onal evalua$on metrics(TODO..җઁ?) • sor%no ra%o • calmar ra%o •
traynor ra%o • informa%on ra%o • winning ra%o • RoMAD • beta, alpha © Quant Study, Beomjun Shin, July 23, 2016
All that Gli)ers Is Not Gold: Sharpe Ra5o Specifically, we
find that commonly reported backtest evalua9on metrics like the Sharpe ra)o offer li.le value in predic)ng out of sample performance (R² < 0.025). In contrast, higher order moments, like vola)lity and maximum drawdown, as well as porEolio construc9on features, like hedging, show significant predic9ve value of relevance to quan9ta9ve finance prac99oners. - All that GliKers Is Not Gold. Quantopian © Quant Study, Beomjun Shin, July 23, 2016
All that Gli)ers Is Not Gold: Vola3lity Moreover, risk metrics
that aim to quan3fy vola%lity alone like annual vola3lity (Pearson R² = 0.67; p < 0.0001), and maximum drawdown (Pearson R² = 0.34; p < 0.0001) had sta3s3cally significant correla3ons between their IS and OOS period - All that GliRers Is Not Gold. Quantopian © Quant Study, Beomjun Shin, July 23, 2016
ਬೠ ߸ࣻ ӝ: 5࠙ਤ ಂఠ ࠙ࢳ & ߮݃ ࢸ ©
Quant Study, Beomjun Shin, July 23, 2016
ೠ ߮݃ ࢸ • Stock Picking • ߮݃ب ݽഋҗ э
ܻߖ۠य ӝ۽ प • ࠁా Equal Weighted Index • Single Asset • Buy and hold strategy ߮݃ܳ ਊೞৈ ݽ؛ ୡҗࣻܫ ҅ೠ © Quant Study, Beomjun Shin, July 23, 2016
߸ࣻ ߸ജ [߸ࣻ]ܳ [ӝ]۽ [߸ഋ]೧ ࠁҊ [ҙ]ীࢲ [ஏӝр]݅ఀ ࠁਬ •
߸ࣻ: Value, Momentum, Quality • ӝ: 1ѐਘ, 1௪ఠ(=3ѐਘ), 1֙, 3~5֙ • ߸ഋ: пઙ زಣӐ, ݽݭథ, Valua9on Model • ҙ: Loser-Follow(contrarian), Winner-Follow • ஏӝр: 1ѐਘ, 1௪ఠ(=3ѐਘ), 1֙, 3~5֙ © Quant Study, Beomjun Shin, July 23, 2016
Remind! Common Mistakes © Quant Study, Beomjun Shin, July 23,
2016
1. Survivor-biased Data(Data Snooping) • NaN ؘఠ • ܻ Ҋػ
ਬפߡझ ೧Ѿ଼ • җѢ दীࢲ ਬפߡझ ؘఠ ࢎਊ © Quant Study, Beomjun Shin, July 23, 2016
2. Lookahead Bias • ؘఠ݃ ݽ؛ীࢲ पࣻೞӝ ए Overlap Bias
• য ߊ৬ ઙо ҙ҅ (য ઙоо աৡ ٍী ߊؽ) • ղо ݅ٚ ݽ؛ ইޖܻ ѐ౸ۄب 2008֙ ܻझ݅ ೖೡ ࣻ ݶ જ ۚ ؽ ೧Ѿ଼ • ؘఠ द ഛೞѱ ঈೞӝ(ؘఠ ಿ౹!) • "য়ט ઙо"ܳ NaNਵ۽ فҊ पೞӝ © Quant Study, Beomjun Shin, July 23, 2016
3. In-sample Backtes1ng • э ؘఠܳ فҊ ৈ۞ߣ ߈ࠂ प
റ э ؘఠীࢲ పझ ೧Ѿ଼ • Mul%ple Hypothesis Tes%ng য়ܨ ഛೞѱ ೧ೞӝ • प പࣻ/प ӝ۾ ԝԝೞѱ ۽Ӧ೧فӝ • IS/OOS పझ ೞӝ © Quant Study, Beomjun Shin, July 23, 2016
4. Market Impact, Slippage • ઙо Ѣېա زदഐо Ѣېীࢲ ղо
֍ ޙ оѺਸ ৢܽ • Ѣې ઙݾਸ ਬפߡझ۽ فҊ ݅ٚ ۚ • ೠ Rule of Thumb ҃ਵ۽ ٜ݅ ೧Ѿ଼ • ೠ ठܻೖܳ хউ೧ࢲ ߔపझ ࣻܫ ҅(e.g. S&P500 5bp, ઙ ݾ 50bp) • Ѣې ؘఠ ࢎਊೞӝ(Ѣې ֫ ઙݾ ࢎਊ; ࠁా ࣻ ҃ 10র ࢚?) © Quant Study, Beomjun Shin, July 23, 2016
5. Overfi)ng Model • ߈ࠂਵ۽ in-sample ؘఠܳ فҊ "tweak" ೞҊ
"refine"ೠ ݽ؛ • ߸ࣻо ݆Ҋ ࠂೠ ݽ؛ ࢎਊೞӝ ೧Ѿ଼ • IS/OOS పझ ೞӝ • п ਬפߡझ ҳࢿ ನಫܻয় ࣻܫী ࠺ ࠁӝ © Quant Study, Beomjun Shin, July 23, 2016
6. Trus(ng stateful strategy luck • Rebalancing ӝী ٮۄ ݽ؛
ࢿמ ѱѱ ߄Ո(۠ ݽ؛ਸ stateful strategyۄ ೠ ) • Walk-forward Tes;ngীࢲب start pointܳ য٣۽ ೞջী ٮۄ ࢿמ ׳ۄ ೧Ѿ଼ • оמೠ ݽٚ ܻߖ۠य ӝ, द ࠗ ܰѱ فҊ प(٘ܳ ੜ ىঠೠ!)ೞҊ ࣻܫ Varianceܳ ಝࠁӝ • গୡী Varianceо ݶ ۚ ޖೞҊ ࢤп೧ঠೠ • ٮۄࢲ, ୭ೠ 'daily' ؘఠܳ ࢎਊೞӝ © Quant Study, Beomjun Shin, July 23, 2016
7. Procedure Overfi.ng • ইޖܻ ਤ पٜࣻਸ ઑबೞ؊ۄب җѢח
җѢ۽ ରੋ য় ߡೖ ߈٘द ߊࢤ ೧Ѿ଼ • ݒੌ पઁ ؘఠ۽ Paper Trading Nѐਘ ࢚ ೧ࠄ ٍ पઁ تਸ ֍ӝ • ٮۄࢲ, ୭ೠ ࣘੋ दझమ غب۾ ݒੌ ؘఠо ୶оؼ ࣻ ѱ दझమ ҳࢿೞӝ © Quant Study, Beomjun Shin, July 23, 2016
8. Random Strategy • ো աৡ ۚੌө? ইקө? • ࢎਊೠ
ؘఠ ԝԝೞѱ ಝࠁӝ • খ 1~7ߣ पࣻח بਵ۽ ೞח पࣻо ইפۄ ؘఠܳ ԝԝೞѱ ೖ ঋইࢲ ߊࢤೞח पࣻ ೧Ѿ଼ • p-value ҅ ١ ా҅ ӝߨ ࢎਊೞҊ ୭ࣗೠ पਸ ৈ۞ߣ ೧ࠁӝ • ݽٚ Input ؘఠী ೠ द҅ৌ ࠁӝ, NaN ؘఠ ਬޖ ࠁӝ © Quant Study, Beomjun Shin, July 23, 2016
9. Don't Forget Commission, Tax • ௫ۚ ӝࠄਵ۽ ݒݒഥਯ ֫.
ࣻࣻܐח ߈٘द хউ೧ঠೣ ೧Ѿ଼ • ࣻࣻܐ ݽ؛ ٜযр ߔపझ ҅ ۽ ٜ݅যفӝ • ࣻࣻܐ ҅ য۵ݶ ୭ࣗೠ ఢয়ߡח ҅ೞӝ © Quant Study, Beomjun Shin, July 23, 2016
We need our powerful backtest tool ! • ࣚए ࢎਊ
& ࡅܲ ࢎਊ • ਃ evalua)on metric ҅(return, turnover etc.) • п ઙݾ ҳࢿ ࠺ਯ • ࣻࣻܐ Ҋ۰ ࣻܫ ҅ • пઙ Visualiza)on © Quant Study, Beomjun Shin, July 23, 2016
Quant ױ࢚ • ־ҳա ࠁח ؘఠ۽ ۚ ٜ݅ӝ • Contrarian
vs Follower, ѾҴ Behavior ஏऱ? • Sinificanceܳ ӝূ ցޖաب ؘఠ • যڌѱ ա݅ ؘఠܳ ݅٘חо? © Quant Study, Beomjun Shin, July 23, 2016
Future Works • झझ۽ ٣పੌ ӝ • ೧৻ ૐӂࢎ ܻನ
झఠ٣ • ݒ HIT ֫ও؍ SSRN ಕಌ ࣁա • पઁ ైೞӝ © Quant Study, Beomjun Shin, July 23, 2016
References • wiki: Sensi+ve and specficity • The p value
and the base rate fallacy • Evalua+on Metrics • All that Gli@ers Is Not Gold • 9 Mistakes Quants Make that Cause Backtests to Lie by Tucker Balch, Ph.D © Quant Study, Beomjun Shin, July 23, 2016
Conven&onal Assump&ons © Quant Study, Beomjun Shin, July 23, 2016