Upgrade to Pro — share decks privately, control downloads, hide ads and more …

"진짜 되는" 투자 전략 찾기: 금융전략과 통계적 검정

"진짜 되는" 투자 전략 찾기: 금융전략과 통계적 검정

2016년 7월 23일, 퀀트 스터디 그룹 발표 자료

Avatar for Beomjun Shin

Beomjun Shin

July 23, 2016
Tweet

More Decks by Beomjun Shin

Other Decks in Research

Transcript

  1. "૓૞ غח" ై੗ ੹ۚ ଺ӝ Әਲ਼੹ۚҗ ా҅੸ Ѩ੿ July 23,

    2016 नߧળ © Quant Study, Beomjun Shin, July 23, 2016
  2. ௫౟ ୡࠁ੄ ੌ઱ੌ 1. (ಂఠ࠙ࢳ) ࣻহח ߎਸ ࢜ݴ ߸ࣻܳ ݃ҳ

    ߸ഋ೧ࠄ׮ 2. Ӓۧѱ ݆ࣻ਷ ੹ۚ(?)ਸ ٜ݅ѱ ػ׮ 3. ߮஖݃௼ب ޅ੉ӝח ੹ٜۚী ઝ੺ೠ׮ -> द੢੉ ബਯ੸ੌѢঠ..(?) 4. যו ࣽр 10֙ ־੸ ࣻ੊ܫ 160% ੿ب ҡଳই ࠁ੉ח ੹ۚ ߊѼೠ׮ 5. (оࢸѨ੿&प೷ࢸ҅) ৬৬! Ӕؘ ੉Ѣ ޺Ҋ ై੗೧ب غա...??? © Quant Study, Beomjun Shin, July 23, 2016
  3. (ಎ؊ݭణ) ߸ࣻܳ যڌѱ ࢎਊೞ૑? [߸ࣻ]ܳ [઱ӝ]۽ [߸ഋ]೧ ࠁҊ [ҙ੼]ীࢲ [৘ஏӝр]݅ఀ

    ࠁਬ • ߸ࣻ: Value, Momentum, Quality • ઱ӝ: 1ѐਘ, 1௪ఠ(=3ѐਘ), 1֙, 3~5֙ • ߸ഋ: пઙ ੉زಣӐ, ݽݭథ, Valua9on Model • ҙ੼: Loser-Follow(contrarian), Winner-Follow • ৘ஏӝр: 1ѐਘ, 1௪ఠ(=3ѐਘ), 1֙, 3~5֙ © Quant Study, Beomjun Shin, July 23, 2016
  4. प೷ ௏٘ SP500_YEARLY_VOL = 0.15 LENGTH = 252*10 SIZE =

    100 DATEINDEX = pd.date_range(start="2011-01-01", periods=LENGTH) normal_walks = pd.DataFrame() for n in range(SIZE): normal_walks[n] = pd.Series( (np.random.normal( loc=0, scale=SP500_YEARLY_VOL / np.sqrt(252), size=(LENGTH, 1) ) + 1).cumprod(), index=DATEINDEX ) -> ࣻ੊ܫ 160%ח 100ߣ ೧ࠁݶ 1ߣ਷ աৢ ࣻ ߆ী হ׮!1 1 ࣻ੊ܫ੉ Normalਸ ٮܲ׮Ҋ о੿, 10֙ زউ ై੗ೠ׮Ҋ о੿, S&P 500 ࣻળ੄ Vola0lityܳ ࢎਊೣ © Quant Study, Beomjun Shin, July 23, 2016
  5. ݾର • оࢸѨ੿җ प೷ࢸ҅ • In-Sample ࠙ࢳ • p-value ৬

    Mul/ple Tes/ng Problem ೖೞӝ • In/Out-Sample ࠙ࢳ • ಂఠ ࠙ࢳ • ੸੺ೠ ߮஖݃௼ ࢸ੿ • N࠙ਤ ࠙ࢳ प೯ © Quant Study, Beomjun Shin, July 23, 2016
  6. ా҅೟ ӝࠄ ਊয • ా҅೟(sta&s&cs)? • ಴ࠄ(sample)۽ࠗఠ ݽ૘ױ(popula&on)ਸ ਬ୶ೞח Ѫ

    • ా҅۝(sta&s&c)? • ݽ૘ױ੄ ౠ૚ਸ ୶੿ೞӝ ਤ೧ ࢠ೒۽ࠗఠ ҅࢑ೞח ӏ஗ • ಴ࠄ࠙ನ(sampling distribu&on)? • ా҅۝(sta&s&c)੄ ഛܫ࠙ನ • ಴ࠄ࠙ನо ઺ਃೞ׮. © Quant Study, Beomjun Shin, July 23, 2016
  7. ా҅೟ োण • ୡҗ ࣻ੊ܫ(Excess Return)ী ؀ೠ ୶੿ਸ ೧ࠁ੗ •

    о੿1: ୡҗ ࣻ੊ܫ਷ ੿ӏ࠙ನܳ ٮܲ׮ • о੿2: ࢠ೒੄ ࣻ(୨ োب੄ ࣻ) n੉ ੘׮ • ഛܫ߸ࣻ • ా҅۝(sta,s,c) ח ੗ਬب ੋ t-࠙ನ(಴ࠄ࠙ನ;sampling distribu,on)ਸ ٮܴ ੉ ঌ۰ઉ੓׮ • ҙण੸ਵ۽ Әਲ਼ীࢶ t-sta,s,c੉ 2ܳ ֈযঠ ࢎਊೞחѦ۽ ߉ই٘۰૓׮ © Quant Study, Beomjun Shin, July 23, 2016
  8. p-value = type 1 error def. sta)s)c > cri)cal value

    or significance level > p-value © Quant Study, Beomjun Shin, July 23, 2016
  9. power = 1 - type 2 error def. sta)s)c >

    cri)cal value © Quant Study, Beomjun Shin, July 23, 2016
  10. Low p-value or High p-value in Stock Return? © Quant

    Study, Beomjun Shin, July 23, 2016
  11. T ా҅۝җ ࢥ೐࠺ਯ 2 2 r਷ yearly return੉ۄ о੿, daily

    return਷ ܳ ғೞৈ োਯചػ ࢥ೐࠺ਯ۽ ࢎਊ. ਷ ݽ؛੄ Return, ח ߮஖݃௼੄ Return © Quant Study, Beomjun Shin, July 23, 2016
  12. ୡҗࣻ੊਷ ઓ੤ೞחо? • ӈޖоࢸ: ୡҗࣻ੊੉ হ׮ ( ) = 'ژ੉

    ੹ۚ'੉ۄ ೞ੗ • ؀݀оࢸ: ୡҗࣻ੊੉ ੓׮ ( ) = 'ঌ౵ ੹ۚ'੉ۄ ೞ੗ © Quant Study, Beomjun Shin, July 23, 2016
  13. ҡଳই ࠁ੉ח(?) ੹ۚ੄ оࢸѨ੿ from scipy.stats import t nyears =

    10 yearly_sharpe = 0.75 tstat = yearly_sharpe * np.sqrt(nyears) pvalue = 1 - t.cdf(tstat, df=9) print(tstat, pvalue) # => 2.37170824513 0.0208959003886 • p-value: 2% • Ѣ૙ ೧ࢳ: ঌ౵੹ۚ੉ۄҊ ೠ ੉ ੹ۚ੉ ૓૞ ঌ౵੹ۚੌ ഛܫ੉ 98% ੉׮ • ଵػ ೧ࢳ1: ژ੉੹ۚੋؘ ঌ౵੹ۚ੉ۄҊ ೡ ഛܫ੉ 2% ੉׮ • ଵػ ೧ࢳ2: ژ੉੹ۚੋؘ ژ੉੹ۚ੉ۄҊ ೡ ഛܫ੉ 98% ੉׮ © Quant Study, Beomjun Shin, July 23, 2016
  14. Python Code N = 100 base_rate = 0.10 alpha =

    0.02 beta = 0.2 contingency_table = pd.DataFrame( [ [ N*base_rate*(1-beta), # pred ঌ౵, real ঌ౵ N*base_rate*beta # pred ঌ౵, real ژ੉ ], [ N*(1-base_rate)*alpha, # pred ژ੉, real ঌ౵ N*(1-base_rate)*(1-alpha) # pred ژ੉, real ژ੉ ] ], index=pd.Series(["ঌ౵੹ۚ", "ژ੉੹ۚ"], name="True"), columns=pd.Series(["ঌ౵੹ۚ", "ژ੉੹ۚ"], name="Pred")) fdr = contingency_table.iloc[1, 0] / contingency_table.iloc[:, 0].sum() print("FDR:", fdr) contingency_table © Quant Study, Beomjun Shin, July 23, 2016
  15. P-valueী ؀ೠ ೧ࢳ ׮द ੿ܻ • [ঌ౵੹ۚ੉ۄҊ ೠ ੹ۚ੉ ژ੉੹ۚੌ

    ഛܫ]੉ [2%] ੉׮ [X] • [ঌ౵੹ۚ੉ۄҊ ೠ ੹ۚ੉ ژ੉੹ۚੌ ഛܫ]਷ False Discovery Rate(FDR)੉޲۽ ੉׮ [O] • [ژ੉੹ۚਸ ঌ౵੹ۚ੉ۄҊ ೡ ഛܫ]਷ [2%]੉׮ [O] • FDRਸ ஶ౟܀ೞח Ѫ੉ ઺ਃ೤פ׮. © Quant Study, Beomjun Shin, July 23, 2016
  16. Mul$ple Tes$ng Problem ࢎ۹1: ੐੄੄ ౟ۨ੉٬ ੹ۚী 100ѐ੄ ےؒ ߸ചܳ

    ઱Ҋ ਗې ੹ۚҗ P&L ਸ 2-sample t-test ೠ׮Ҋ ೞ੗. 100ѐ੄ ےؒ߸ചо ੹ࠗ ޖ੄޷ೠ ࢚ട (base rate = 0)੐ীب p-valueܳ 5% ࣻળਵ۽ ౸ױೞݶ 5ѐח ਬ੄ೞѱ աৢ Ѫ੉׮. Ӓۧ׮ݶ Ӓ 5ѐ੄ ੹ۚਵ۽ ై੗ೞݶ غחо? NO! ࢎ۹2: ୭Ҋ੄ ై੗੗ غח ߑߨ, 10000ݺ੄ Ҋёীѱ Ӓ ઺ ੺߈਷ ղੌ ௏ झೖо য়ܲ׮Ҋ ੉ݫੌਸ ࠁղҊ աݠ૑ ੺߈਷ ߈؀۽ ৘ஏ Ѿҗܳ ࠁմ׮. ੉Ѧ 10ߣ ߈ࠂೞݶ 10ݺ੄ ҊёীѲ ղо 10ߣ ݽف ݏ୸ ࣅ੉ ػ׮. դ ୭ Ҋ੄ ై੗੗ੋо? NO! © Quant Study, Beomjun Shin, July 23, 2016
  17. ೧Ѿೞח 2о૑ ҙ੼ • Family-Wise Error Rate(FWER) • ੺؀੸ੋ ҙ੼ীࢲ

    ױ 1ѐ੄ type 1 errorо ߊࢤೞח Ѫب ೲਊೞ૑ ঋח׮ • 100ѐ੄ పझ౟ա 10000ѐ੄ పझ౟ա ױ 1ѐ੄ type 1 errorب ߊࢤೞݶ উػ׮ • False Discovery Rate(FDR) • ࠺ਯ ҙ੼ীࢲ type 1 errorо ߊࢤೞחѦ ೲਊೞ૑ ঋח׮. • 100ѐ੄ పझ౟ীࢲ 1ѐܳ ೲਊೞ૑ ঋח׮ݶ 10000ѐ੄ పझ౟ীࢶ 100ѐܳ ೲ ਊೞ૑ ঋח׮ © Quant Study, Beomjun Shin, July 23, 2016
  18. FWER: Bonferroni’s Correc2on • 1ѐ੄ పझ౟: p-value 5% • 10ѐ੄

    పझ౟: p-value 5% -> 5/10 % • 100ѐ੄ పझ౟: p-value 5% -> 5/100 % ࢤп. • ై੗੹ۚ਷ ইಫ۽ ೐۽ં౟о ইפӝ ٸޙী ઑӘ ਬೞѱ ࠊب غ૑ ঋਸө? • ݅ড Nߣ੄ పझ౟о completely uncorrelated੉ݶ ਤ୊ۢ ೧ب ؼ Ѫ੉׮, ೞ૑ ݅ perfectly correlated غ੓׮ݶ ࢎप࢚ పझ౟ח Nߣ੉ ইפۄ 1ߣೠ ࣅ੉ ػ׮ © Quant Study, Beomjun Shin, July 23, 2016
  19. FWER: Holm-Bonferroni Method • ծ਷ p-value ࠗఠ ֫਷ p-value ࣽਵ۽

    ੿۳ • kח పझ౟੄ ੋؙझ, M਷ ੹୓ పझ౟ പࣻ, \alphaח significance level • sta6s6c੄ ࠙ನܳ ࢎਊೞח ѐ֛ © Quant Study, Beomjun Shin, July 23, 2016
  20. FDR: Benjamini and Hochberg, Yeku9eli(BHY) • ֫਷ p-value ࠗఠ ծ਷

    p-value ࣽਵ۽ ੿۳ • о੢ וटೠ ߑߨ • harvey৯, о੢ ੸੺ೞ׮Ҋ ঌ۰૓ ߑߨ © Quant Study, Beomjun Shin, July 23, 2016
  21. ਃড • • Mul%ple Tes%ng Problem & Solu%on • Interpret

    p-value © Quant Study, Beomjun Shin, July 23, 2016
  22. Terms • (Sta&s&cs) In-sample(IS) Data / Out-of-sample(OOS) Data • (Machine

    Learning) Training Data / Valida&on Data / Test Data / Cross-Valida&on © Quant Study, Beomjun Shin, July 23, 2016
  23. അप੄ प೷ ࢸ҅: ೟ण੉ হח ݽ؛ 1. ୭Ӕ N֙ ؘ੉ఠܳ

    Out-of-sample(OOS) ؘ੉ఠ, աݠ૑ܳ In-sample(IS) ؘ੉ ఠ۽ ܻ࠙೧ك׮ 2. IS ؘ੉ఠܳ о૑Ҋ प೷ਸ ߈ࠂೠ׮ • प೷੄ ߈ࠂ਷ ઱۽ ݽ؛੄ ߸ച, ౵ۄ޷ఠ੄ ߸ച۽ ҳࢿػ׮ • ಌನݢझܳ ҙ଴ೠ പࣻܳ ߈٘द ӝ۾ೠ׮ 3. о੢ જও؍ TOP n ѐ੄ ݽഋਸ OOS ؘ੉ఠী प೷ೠ׮ 4. प೷ ౠࢿ࢚ য়ߡೖ౴ী ݒ਋ ਬ੄೧ঠೣਵ۽ प೷ਸ ݆੉ ߈ࠂೞ૑ ঋח׮ © Quant Study, Beomjun Shin, July 23, 2016
  24. അप੄ प೷ ࢸ҅: ೟ण੉ ੓ח ݽ؛ 1. ୭Ӕ N֙ਸ प೷

    ؘ੉ఠীࢲ ߓઁ೧ك׮(Holdout data;Test Data) 2. Walk Forward Tes9ng ೐ۨ੐(ৈ۞ߥ੄ IS/OSS ؘ੉ఠܳ ঳਺)ਵ۽ పझ౟ܳ ߈ࠂೠ׮ • Walk Forward Tes9ng ب ߈ࠂೞ׮ࠁݶ ѾҴ OSS ؘ੉ఠী য়ߡೖ౴ػ׮ • ಌನݢझܳ ҙ଴ೠ പࣻܳ ߈٘द ӝ۾ೠ׮ • प೷੄ ߈ࠂ਷ ઱۽ ݽ؛੄ ߸ച৬ ೞ੉ಌ౵ۄ޷ఠ੄ ߸ച۽ ҳࢿػ׮ 3. о੢ જও؍ TOP n ѐ੄ ݽഋਸ OOS ؘ੉ఠী प೷ೠ׮ © Quant Study, Beomjun Shin, July 23, 2016
  25. Common Evalua+on Metrics • t-sta&s&c; p-value • sharpe ra&o •

    Annualized Return, Annual Vola)lity • CAGR • turnover • maxdrawdown © Quant Study, Beomjun Shin, July 23, 2016
  26. Sharpe Ra)o details Risk-Free Rate (Variance is not affected by

    constant) Benchmark © Quant Study, Beomjun Shin, July 23, 2016
  27. Annualize Sharpe Ra/o • IID Return Assump.on(NO SERIAL COLLREATION! REAL?)

    • Daily -> Yearly: • Monthly -> Yearly: © Quant Study, Beomjun Shin, July 23, 2016
  28. Addi$onal evalua$on metrics(TODO..җઁ?) • sor%no ra%o • calmar ra%o •

    traynor ra%o • informa%on ra%o • winning ra%o • RoMAD • beta, alpha © Quant Study, Beomjun Shin, July 23, 2016
  29. All that Gli)ers Is Not Gold: Sharpe Ra5o Specifically, we

    find that commonly reported backtest evalua9on metrics like the Sharpe ra)o offer li.le value in predic)ng out of sample performance (R² < 0.025). In contrast, higher order moments, like vola)lity and maximum drawdown, as well as porEolio construc9on features, like hedging, show significant predic9ve value of relevance to quan9ta9ve finance prac99oners. - All that GliKers Is Not Gold. Quantopian © Quant Study, Beomjun Shin, July 23, 2016
  30. All that Gli)ers Is Not Gold: Vola3lity Moreover, risk metrics

    that aim to quan3fy vola%lity alone like annual vola3lity (Pearson R² = 0.67; p < 0.0001), and maximum drawdown (Pearson R² = 0.34; p < 0.0001) had sta3s3cally significant correla3ons between their IS and OOS period - All that GliRers Is Not Gold. Quantopian © Quant Study, Beomjun Shin, July 23, 2016
  31. ੸੺ೠ ߮஖݃௼ ࢸ੿ • Stock Picking • ߮஖݃௼ب ݽഋҗ э਷

    ܻߖ۠य ઱ӝ۽ प೷ • ࠁా਷ Equal Weighted Index • Single Asset • Buy and hold strategy ߮஖݃௼ܳ ੉ਊೞৈ ݽ؛੄ ୡҗࣻ੊ܫ ҅࢑ೠ׮ © Quant Study, Beomjun Shin, July 23, 2016
  32. ߸ࣻ੄ ߸ജ [߸ࣻ]ܳ [઱ӝ]۽ [߸ഋ]೧ ࠁҊ [ҙ੼]ীࢲ [৘ஏӝр]݅ఀ ࠁਬ •

    ߸ࣻ: Value, Momentum, Quality • ઱ӝ: 1ѐਘ, 1௪ఠ(=3ѐਘ), 1֙, 3~5֙ • ߸ഋ: пઙ ੉زಣӐ, ݽݭథ, Valua9on Model • ҙ੼: Loser-Follow(contrarian), Winner-Follow • ৘ஏӝр: 1ѐਘ, 1௪ఠ(=3ѐਘ), 1֙, 3~5֙ © Quant Study, Beomjun Shin, July 23, 2016
  33. 1. Survivor-biased Data(Data Snooping) • NaN ؘ੉ఠ • ޷ܻ Ҋ੿ػ

    ਬפߡझ ೧Ѿ଼ • җѢ द੼ীࢲ੄ ਬפߡझ ؘ੉ఠ ࢎਊ © Quant Study, Beomjun Shin, July 23, 2016
  34. 2. Lookahead Bias • ؘ੉ఠ݃੉׬ ݽ؛ীࢲ पࣻೞӝ ए਍ Overlap Bias

    • য׬ ߊ಴৬ ઙо੄ ҙ҅ (য׬਷ ઙоо աৡ ٍী ߊ಴ؽ) • ղо ݅ٚ ݽ؛੉ ইޖܻ ѐ౸੉ۄب 2008֙ ܻझ௼݅ ೖೡ ࣻ ੓׮ݶ જ਷ ੹ۚ ੉ ؽ ೧Ѿ଼ • ؘ੉ఠ੄ द੼ ੿ഛೞѱ ౵ঈೞӝ(ؘ੉ఠ ಿ౹੉!) • "য়ט੄ ઙо"ܳ NaNਵ۽ فҊ प೷ೞӝ © Quant Study, Beomjun Shin, July 23, 2016
  35. 3. In-sample Backtes1ng • э਷ ؘ੉ఠܳ فҊ ৈ۞ߣ ߈ࠂ प೷

    റ э਷ ؘ੉ఠীࢲ పझ౟ ೧Ѿ଼ • Mul%ple Hypothesis Tes%ng য়ܨ ੿ഛೞѱ ੉೧ೞӝ • प೷ പࣻ/प೷ ӝ۾ ԝԝೞѱ ۽Ӧ೧فӝ • IS/OOS పझ౟ ೞӝ © Quant Study, Beomjun Shin, July 23, 2016
  36. 4. Market Impact, Slippage • ઙо Ѣېա زदഐо Ѣېীࢲ ղо

    ֍਷ ઱ޙ੉ оѺਸ ৢܽ׮ • Ѣې۝੉ ੘਷ ઙݾਸ ਬפߡझ۽ فҊ ݅ٚ ੹ۚ • ੸੺ೠ Rule of Thumb਷ ҃೷ਵ۽ ٜ݅੗ ೧Ѿ଼ • ੸੺ೠ ठܻೖ૑ܳ хউ೧ࢲ ߔపझ౴ ࣻ੊ܫ ҅࢑(e.g. S&P500਷ 5bp, ੘਷ ઙ ݾ਷ 50bp) • Ѣې۝ ؘ੉ఠ ࢎਊೞӝ(Ѣې۝ ֫਷ ઙݾ ࢎਊ; ࠁా ૑ࣻ੄ ҃਋ 10র ੉࢚?) © Quant Study, Beomjun Shin, July 23, 2016
  37. 5. Overfi)ng Model • ߈ࠂ੸ਵ۽ in-sample ؘ੉ఠܳ فҊ "tweak" ೞҊ

    "refine"ೠ ݽ؛ • ߸ࣻо ݆Ҋ ࠂ੟ೠ ݽ؛ ࢎਊೞӝ ೧Ѿ଼ • IS/OOS పझ౟ ೞӝ • п ਬפߡझ ҳࢿ ੗࢑੉ ನ౟ಫܻয় ࣻ੊ܫী ޷஘ ੉੊ ࠺઺ ࠁӝ © Quant Study, Beomjun Shin, July 23, 2016
  38. 6. Trus(ng stateful strategy luck • Rebalancing ઱ӝী ٮۄ ݽ؛

    ࢿמ਷ ௼ѱ௼ѱ ߄Ո׮(੉۠ ݽ؛ਸ stateful strategyۄ ೠ ׮) • Walk-forward Tes;ngীࢲب start pointܳ য٣۽ ೞջী ٮۄ ࢿמ੉ ׳ۄ૓׮ ೧Ѿ଼ • оמೠ ݽٚ ܻߖ۠य ઱ӝ, द੘੼ ੹ࠗ ׮ܰѱ فҊ प೷(௏٘ܳ ੜ ૞ىঠೠ׮!)ೞҊ ࣻ੊ܫ ੄ Varianceܳ ࢓ಝࠁӝ • গୡী Varianceо ௼׮ݶ ੉ ੹ۚ੉ ޖ੄޷ೞ׮Ҋ ࢤп೧ঠೠ׮ • ٮۄࢲ, ୭؀ೠ 'daily' ؘ੉ఠܳ ࢎਊೞӝ © Quant Study, Beomjun Shin, July 23, 2016
  39. 7. Procedure Overfi.ng • ইޖܻ ਤ੄ पٜࣻਸ ઑबೞ؊ۄب ੉޷ җѢח

    җѢ੉޲۽ ੺ର੸ੋ য় ߡೖ౴਷ ߈٘द ߊࢤ ೧Ѿ଼ • ݒੌ੄ पઁ ؘ੉ఠ۽ Paper Trading Nѐਘ ੉࢚ ೧ࠄ ٍ पઁ تਸ ֍ӝ • ٮۄࢲ, ୭؀ೠ ૑ࣘ੸ੋ दझమ੉ غب۾ ݒੌ ؘ੉ఠо ୶оؼ ࣻ ੓ѱ दझమ ҳࢿೞӝ © Quant Study, Beomjun Shin, July 23, 2016
  40. 8. Random Strategy • ਋ো൤ աৡ ੹ۚੌө? ইקө? • ࢎਊೠ

    ؘ੉ఠ ԝԝೞѱ ࢓ಝࠁӝ • খ੄ 1~7ߣ੄ पࣻח ੄ب੸ਵ۽ ೞח पࣻо ইפۄ ؘ੉ఠܳ ԝԝೞѱ ࢓ೖ ૑ ঋইࢲ ߊࢤೞח पࣻ ೧Ѿ଼ • p-value ҅࢑ ١ ా҅੸ ӝߨ ࢎਊೞҊ ୭ࣗೠ੄ प೷ਸ ৈ۞ߣ ೧ࠁӝ • ݽٚ Input ؘ੉ఠী ؀ೠ द҅ৌ ࠁӝ, NaN ؘ੉ఠ ਬޖ ࠁӝ © Quant Study, Beomjun Shin, July 23, 2016
  41. 9. Don't Forget Commission, Tax • ௫౟੹ۚ਷ ӝࠄ੸ਵ۽ ݒݒഥ੹ਯ੉ ֫਺.

    ࣻࣻܐח ߈٘द хউ೧ঠೣ ೧Ѿ଼ • ࣻࣻܐ ݽ؛੉ ٜযр ߔపझ౴ ҅࢑ ۽૒ ٜ݅যفӝ • ࣻࣻܐ ҅࢑੉ য۵׮ݶ ୭ࣗೠ ఢয়ߡח ҅࢑ೞӝ © Quant Study, Beomjun Shin, July 23, 2016
  42. We need our powerful backtest tool ! • ࣚए਍ ࢎਊ

    & ࡅܲ ࢎਊ • ઱ਃ evalua)on metric ҅࢑(return, turnover etc.) • п ઙݾ੄ ੉੊ ҳࢿ ࠺ਯ • ࣻࣻܐ Ҋ۰ ࣻ੊ܫ ҅࢑ • пઙ Visualiza)on © Quant Study, Beomjun Shin, July 23, 2016
  43. Quant ױ࢚ • ־ҳա ࠁח ؘ੉ఠ۽ ੹ۚ ٜ݅ӝ • Contrarian

    vs Follower, ѾҴ਷ Behavior ৘ஏऱ਑? • Sinificanceܳ ঳ӝূ ցޖաب ੸਷ ؘ੉ఠ • যڌѱ ա݅੄ ؘ੉ఠܳ ݅٘חо? © Quant Study, Beomjun Shin, July 23, 2016
  44. Future Works • झझ۽ ٣పੌ ଻਋ӝ • ೧৻ ૐӂࢎ ܻನ౟

    झఠ٣ • ݒ઱ HIT ֫ও؍ SSRN ಕ੉ಌ ࣁ޷ա • पઁ ై੗ೞӝ © Quant Study, Beomjun Shin, July 23, 2016
  45. References • wiki: Sensi+ve and specficity • The p value

    and the base rate fallacy • Evalua+on Metrics • All that Gli@ers Is Not Gold • 9 Mistakes Quants Make that Cause Backtests to Lie by Tucker Balch, Ph.D © Quant Study, Beomjun Shin, July 23, 2016