Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
遺伝的アルゴリズムでシフト組みを自動化した話
Search
ShibaNyan
September 10, 2018
Programming
0
2k
遺伝的アルゴリズムでシフト組みを自動化した話
BitValley2018 AfterPartyのLTでお話しました.
当番のシフトを組むのに時間がかかりすぎるという問題を,遺伝的アルゴリズムを使ってLINE BOTに実装することで解決しました.
ShibaNyan
September 10, 2018
Tweet
Share
More Decks by ShibaNyan
See All by ShibaNyan
証明写真を30円で作る
shiba6v
0
960
IPythonマジックコマンドを作る
shiba6v
1
1.8k
畳み込みニューラルネットワーク(CNN)の判断根拠の可視化手法 (20分トーク用)
shiba6v
1
1.2k
Other Decks in Programming
See All in Programming
250830 IaCの選定~AWS SAMのLambdaをECSに乗り換えたときの備忘録~
east_takumi
0
400
そのAPI、誰のため? Androidライブラリ設計における利用者目線の実践テクニック
mkeeda
2
2.8k
基礎から学ぶ大画面対応(Learning Large-Screen Support from the Ground Up)
tomoya0x00
0
4.3k
意外と簡単!?フロントエンドでパスキー認証を実現する WebAuthn
teamlab
PRO
2
780
複雑なドメインに挑む.pdf
yukisakai1225
5
1.2k
奥深くて厄介な「改行」と仲良くなる20分
oguemon
1
570
アセットのコンパイルについて
ojun9
0
130
MCPでVibe Working。そして、結局はContext Eng(略)/ Working with Vibe on MCP And Context Eng
rkaga
5
2.3k
FindyにおけるTakumi活用と脆弱性管理のこれから
rvirus0817
0
540
スケールする組織の実現に向けた インナーソース育成術 - ISGT2025
teamlab
PRO
2
170
個人開発で徳島大学生60%以上の心を掴んだアプリ、そして手放した話
akidon0000
1
150
テストカバレッジ100%を10年続けて得られた学びと品質
mottyzzz
2
610
Featured
See All Featured
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1.1k
Agile that works and the tools we love
rasmusluckow
330
21k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
9
820
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Context Engineering - Making Every Token Count
addyosmani
3
63
Rebuilding a faster, lazier Slack
samanthasiow
83
9.2k
Designing for Performance
lara
610
69k
Typedesign – Prime Four
hannesfritz
42
2.8k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.6k
Done Done
chrislema
185
16k
Transcript
遺伝的アルゴリズムで シフト組みを自動化した話 BitValley 2018 AfterParty LT
自己紹介 • シバニャン • 京都大学工学部4回生 • Twitter: @_6v_ • CAMPHOR-
当番のシフト • 30コマ,約30人のシフト組み • 1コマに1人割り当てる
シフト決定の流れ 調整サービス シフト組み シフト発表 • 調整サービスを利用してシフトを提出してもらう • 手動でシフト組み • グループLINEで完成したシフトを発表
シフト組みの難しさ • 30コマ,約30人のシフト組み • 30^30 通り(≒2×10^44)
シフト組みの難しさ • 30コマ,約30人のシフト組み • 30^30 通り(≒2×10^44) 2時間かかる・・・ 自動化したい・・・
シフト組みの課題 • 同じ人が2回入らないといけない場合がある • 2回入る場合は日時が離れている方が良い • △,×を考慮するべき など・・・
シフト組みの課題 • 同じ人が2回入らないといけない場合がある • 2回入る場合は日時が離れている方が良い • △を考慮するべき など・・・
遺伝的アルゴリズムでやる シフトを遺伝子に見立てて,生物が交叉,突然 変異,自然淘汰によって進化するようにシフトを 改良していく [(枠1),(枠2),(枠3),…,(枠30)] 例) [(Gさん),(Eさん),(Nさん),…,(Eさん)] [(Aさん),(Lさん),(Gさん),…,(Oさん)]
遺伝的アルゴリズムの説明 • シフト表をランダムに30パターン生成 ↓ • シフト表の良さを評価 ↓ • 評価が良かったシフト6個残して後は消す ↓
• 交叉,突然変異させて30個に増やす 200ループ
遺伝的アルゴリズムの説明 • シフト表をランダムに30パターン生成 200ループ [(Gさん),(Eさん),(Nさん),…,(Eさん)] [(Aさん),(Lさん),(Gさん),…,(Oさん)] … (30パターン) [(Rさん),(Aさん),(Nさん),…,(Dさん)]
遺伝的アルゴリズムの説明 • シフト表をランダムに30パターン生成 • シフト表の良さを評価 200ループ [(Gさん),(Eさん),(Nさん),…,(Eさん)] : 300点 [(Aさん),(Lさん),(Gさん),…,(Oさん)]
: 100点 … (30パターン) [(Rさん),(Aさん),(Nさん),…,(Dさん)] : 50点
遺伝的アルゴリズムの説明 • シフト表をランダムに30パターン生成 • シフト表の良さを評価 • 評価が良かったシフト6個残して後は消す 200ループ [(Gさん),(Eさん),(Nさん),…,(Eさん)] :
300点 [(Aさん),(Lさん),(Gさん),…,(Oさん)] : 100点 … (6パターン)
遺伝的アルゴリズムの説明 • シフト表をランダムに30パターン生成 • シフト表の良さを評価 • 評価が良かったシフト6個残して後は消す • 交叉,突然変異させて30個に増やす 200ループ
[(Gさん),(Eさん),(Nさん),…,(Eさん)] [(Aさん),(Lさん),(Gさん),…,(Oさん)] [(Aさん),(Eさん),(Nさん),…,(Oさん)] … (30パターン)
遺伝的アルゴリズムの説明 • シフト表をランダムに30パターン生成 • シフト表の良さを評価 • 評価が良かったシフト6個残して後は消す • 交叉,突然変異させて30個に増やす 200ループ
[(Gさん),(Eさん),(Nさん),…,(Eさん)] [(Aさん),(Lさん),(Gさん),…,(Oさん)] [(Aさん),(Eさん),(Nさん),…,(Oさん)] [(Gさん),(Eさん),(Nさん),…,(Tさん)] … (30パターン)
遺伝的アルゴリズムの説明 • シフト表をランダムに30パターン生成 ↓ • シフト表の良さを評価 ↓ • 評価が良かったシフト6個残して後は消す ↓
• 交叉,突然変異させて30個に増やす 200ループ
遺伝的アルゴリズムの説明 • シフト表をランダムに30パターン生成 ↓ • シフト表の良さを評価 ↓ • 評価が良かったシフト6個残して後は消す ↓
• 交叉,突然変異させて30個に増やす 200ループ 大事なのはここ! 評価する式を立てる
シフト組みの課題 より • 同じ人が2回入らないといけない場合がある • 2回入る場合は日時が離れている方が良い • △,×を考慮するべき
シフト組みの課題 より • 同じ人が2回入らないといけない場合がある →同じ人が2回入ったら 100点 を減らす • 2回入る場合は日時が離れている方が良い →(離れている日数)×1点
を加える • △,×を考慮するべき →△一個につき10000点,×一個につき1000000 点 を減らす
シフト組みの課題 より • 同じ人が2回入らないといけない場合がある →同じ人が2回入ったら 100点 を減らす • 2回入る場合は日時が離れている方が良い →(離れている日数)×1点
を加える • △,×を考慮するべき →△一個につき10000点,×一個につき1000000 点 を減らす 評価式を追加するだけで, 簡単にシフトの決め方を 変えられる!
BOTにして 使ってみる
まとめ • 遺伝的アルゴリズムを使うと,いい感じのシフ トが組める • シフトの組み方の変更が簡単 • BOTにすると非エンジニアも使えて便利