Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
遺伝的アルゴリズムでシフト組みを自動化した話
Search
ShibaNyan
September 10, 2018
Programming
0
2k
遺伝的アルゴリズムでシフト組みを自動化した話
BitValley2018 AfterPartyのLTでお話しました.
当番のシフトを組むのに時間がかかりすぎるという問題を,遺伝的アルゴリズムを使ってLINE BOTに実装することで解決しました.
ShibaNyan
September 10, 2018
Tweet
Share
More Decks by ShibaNyan
See All by ShibaNyan
証明写真を30円で作る
shiba6v
0
950
IPythonマジックコマンドを作る
shiba6v
1
1.8k
畳み込みニューラルネットワーク(CNN)の判断根拠の可視化手法 (20分トーク用)
shiba6v
1
1.2k
Other Decks in Programming
See All in Programming
10 Costly Database Performance Mistakes (And How To Fix Them)
andyatkinson
0
310
20250628_非エンジニアがバイブコーディングしてみた
ponponmikankan
0
680
第9回 情シス転職ミートアップ 株式会社IVRy(アイブリー)の紹介
ivry_presentationmaterials
1
310
Is Xcode slowly dying out in 2025?
uetyo
1
270
Railsアプリケーションと パフォーマンスチューニング ー 秒間5万リクエストの モバイルオーダーシステムを支える事例 ー Rubyセミナー 大阪
falcon8823
5
1.1k
イベントストーミング図からコードへの変換手順 / Procedure for Converting Event Storming Diagrams to Code
nrslib
2
780
プロダクト志向なエンジニアがもう一歩先の価値を目指すために意識したこと
nealle
0
130
XP, Testing and ninja testing
m_seki
3
240
0626 Findy Product Manager LT Night_高田スライド_speaker deck用
mana_takada
0
170
なんとなくわかった気になるブロックテーマ入門/contents.nagoya 2025 6.28
chiilog
1
270
Blazing Fast UI Development with Compose Hot Reload (droidcon New York 2025)
zsmb
1
290
PHP 8.4の新機能「プロパティフック」から学ぶオブジェクト指向設計とリスコフの置換原則
kentaroutakeda
2
860
Featured
See All Featured
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
107
19k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.9k
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.9k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
Testing 201, or: Great Expectations
jmmastey
43
7.6k
Optimising Largest Contentful Paint
csswizardry
37
3.3k
KATA
mclloyd
30
14k
BBQ
matthewcrist
89
9.7k
Mobile First: as difficult as doing things right
swwweet
223
9.7k
It's Worth the Effort
3n
185
28k
Embracing the Ebb and Flow
colly
86
4.7k
Transcript
遺伝的アルゴリズムで シフト組みを自動化した話 BitValley 2018 AfterParty LT
自己紹介 • シバニャン • 京都大学工学部4回生 • Twitter: @_6v_ • CAMPHOR-
当番のシフト • 30コマ,約30人のシフト組み • 1コマに1人割り当てる
シフト決定の流れ 調整サービス シフト組み シフト発表 • 調整サービスを利用してシフトを提出してもらう • 手動でシフト組み • グループLINEで完成したシフトを発表
シフト組みの難しさ • 30コマ,約30人のシフト組み • 30^30 通り(≒2×10^44)
シフト組みの難しさ • 30コマ,約30人のシフト組み • 30^30 通り(≒2×10^44) 2時間かかる・・・ 自動化したい・・・
シフト組みの課題 • 同じ人が2回入らないといけない場合がある • 2回入る場合は日時が離れている方が良い • △,×を考慮するべき など・・・
シフト組みの課題 • 同じ人が2回入らないといけない場合がある • 2回入る場合は日時が離れている方が良い • △を考慮するべき など・・・
遺伝的アルゴリズムでやる シフトを遺伝子に見立てて,生物が交叉,突然 変異,自然淘汰によって進化するようにシフトを 改良していく [(枠1),(枠2),(枠3),…,(枠30)] 例) [(Gさん),(Eさん),(Nさん),…,(Eさん)] [(Aさん),(Lさん),(Gさん),…,(Oさん)]
遺伝的アルゴリズムの説明 • シフト表をランダムに30パターン生成 ↓ • シフト表の良さを評価 ↓ • 評価が良かったシフト6個残して後は消す ↓
• 交叉,突然変異させて30個に増やす 200ループ
遺伝的アルゴリズムの説明 • シフト表をランダムに30パターン生成 200ループ [(Gさん),(Eさん),(Nさん),…,(Eさん)] [(Aさん),(Lさん),(Gさん),…,(Oさん)] … (30パターン) [(Rさん),(Aさん),(Nさん),…,(Dさん)]
遺伝的アルゴリズムの説明 • シフト表をランダムに30パターン生成 • シフト表の良さを評価 200ループ [(Gさん),(Eさん),(Nさん),…,(Eさん)] : 300点 [(Aさん),(Lさん),(Gさん),…,(Oさん)]
: 100点 … (30パターン) [(Rさん),(Aさん),(Nさん),…,(Dさん)] : 50点
遺伝的アルゴリズムの説明 • シフト表をランダムに30パターン生成 • シフト表の良さを評価 • 評価が良かったシフト6個残して後は消す 200ループ [(Gさん),(Eさん),(Nさん),…,(Eさん)] :
300点 [(Aさん),(Lさん),(Gさん),…,(Oさん)] : 100点 … (6パターン)
遺伝的アルゴリズムの説明 • シフト表をランダムに30パターン生成 • シフト表の良さを評価 • 評価が良かったシフト6個残して後は消す • 交叉,突然変異させて30個に増やす 200ループ
[(Gさん),(Eさん),(Nさん),…,(Eさん)] [(Aさん),(Lさん),(Gさん),…,(Oさん)] [(Aさん),(Eさん),(Nさん),…,(Oさん)] … (30パターン)
遺伝的アルゴリズムの説明 • シフト表をランダムに30パターン生成 • シフト表の良さを評価 • 評価が良かったシフト6個残して後は消す • 交叉,突然変異させて30個に増やす 200ループ
[(Gさん),(Eさん),(Nさん),…,(Eさん)] [(Aさん),(Lさん),(Gさん),…,(Oさん)] [(Aさん),(Eさん),(Nさん),…,(Oさん)] [(Gさん),(Eさん),(Nさん),…,(Tさん)] … (30パターン)
遺伝的アルゴリズムの説明 • シフト表をランダムに30パターン生成 ↓ • シフト表の良さを評価 ↓ • 評価が良かったシフト6個残して後は消す ↓
• 交叉,突然変異させて30個に増やす 200ループ
遺伝的アルゴリズムの説明 • シフト表をランダムに30パターン生成 ↓ • シフト表の良さを評価 ↓ • 評価が良かったシフト6個残して後は消す ↓
• 交叉,突然変異させて30個に増やす 200ループ 大事なのはここ! 評価する式を立てる
シフト組みの課題 より • 同じ人が2回入らないといけない場合がある • 2回入る場合は日時が離れている方が良い • △,×を考慮するべき
シフト組みの課題 より • 同じ人が2回入らないといけない場合がある →同じ人が2回入ったら 100点 を減らす • 2回入る場合は日時が離れている方が良い →(離れている日数)×1点
を加える • △,×を考慮するべき →△一個につき10000点,×一個につき1000000 点 を減らす
シフト組みの課題 より • 同じ人が2回入らないといけない場合がある →同じ人が2回入ったら 100点 を減らす • 2回入る場合は日時が離れている方が良い →(離れている日数)×1点
を加える • △,×を考慮するべき →△一個につき10000点,×一個につき1000000 点 を減らす 評価式を追加するだけで, 簡単にシフトの決め方を 変えられる!
BOTにして 使ってみる
まとめ • 遺伝的アルゴリズムを使うと,いい感じのシフ トが組める • シフトの組み方の変更が簡単 • BOTにすると非エンジニアも使えて便利