Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
遺伝的アルゴリズムでシフト組みを自動化した話
Search
ShibaNyan
September 10, 2018
Programming
0
2k
遺伝的アルゴリズムでシフト組みを自動化した話
BitValley2018 AfterPartyのLTでお話しました.
当番のシフトを組むのに時間がかかりすぎるという問題を,遺伝的アルゴリズムを使ってLINE BOTに実装することで解決しました.
ShibaNyan
September 10, 2018
Tweet
Share
More Decks by ShibaNyan
See All by ShibaNyan
証明写真を30円で作る
shiba6v
0
960
IPythonマジックコマンドを作る
shiba6v
1
1.8k
畳み込みニューラルネットワーク(CNN)の判断根拠の可視化手法 (20分トーク用)
shiba6v
1
1.2k
Other Decks in Programming
See All in Programming
print("Hello, World")
eddie
2
530
AIと私たちの学習の変化を考える - Claude Codeの学習モードを例に
azukiazusa1
11
4.4k
AI時代のUIはどこへ行く?
yusukebe
18
9.1k
複雑なドメインに挑む.pdf
yukisakai1225
5
1.2k
複雑なフォームに立ち向かう Next.js の技術選定
macchiitaka
2
240
プロポーザル駆動学習 / Proposal-Driven Learning
mackey0225
2
1.3k
Ruby×iOSアプリ開発 ~共に歩んだエコシステムの物語~
temoki
0
350
Tool Catalog Agent for Bedrock AgentCore Gateway
licux
7
2.6k
基礎から学ぶ大画面対応(Learning Large-Screen Support from the Ground Up)
tomoya0x00
0
4.3k
API Platform 4.2: Redefining API Development
soyuka
0
230
アセットのコンパイルについて
ojun9
0
130
HTMLの品質ってなんだっけ? “HTMLクライテリア”の設計と実践
unachang113
4
2.9k
Featured
See All Featured
The Invisible Side of Design
smashingmag
301
51k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
113
20k
Code Reviewing Like a Champion
maltzj
525
40k
[RailsConf 2023] Rails as a piece of cake
palkan
57
5.8k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.7k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
RailsConf 2023
tenderlove
30
1.2k
Building Applications with DynamoDB
mza
96
6.6k
How to Think Like a Performance Engineer
csswizardry
26
1.9k
Making the Leap to Tech Lead
cromwellryan
135
9.5k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
Designing for Performance
lara
610
69k
Transcript
遺伝的アルゴリズムで シフト組みを自動化した話 BitValley 2018 AfterParty LT
自己紹介 • シバニャン • 京都大学工学部4回生 • Twitter: @_6v_ • CAMPHOR-
当番のシフト • 30コマ,約30人のシフト組み • 1コマに1人割り当てる
シフト決定の流れ 調整サービス シフト組み シフト発表 • 調整サービスを利用してシフトを提出してもらう • 手動でシフト組み • グループLINEで完成したシフトを発表
シフト組みの難しさ • 30コマ,約30人のシフト組み • 30^30 通り(≒2×10^44)
シフト組みの難しさ • 30コマ,約30人のシフト組み • 30^30 通り(≒2×10^44) 2時間かかる・・・ 自動化したい・・・
シフト組みの課題 • 同じ人が2回入らないといけない場合がある • 2回入る場合は日時が離れている方が良い • △,×を考慮するべき など・・・
シフト組みの課題 • 同じ人が2回入らないといけない場合がある • 2回入る場合は日時が離れている方が良い • △を考慮するべき など・・・
遺伝的アルゴリズムでやる シフトを遺伝子に見立てて,生物が交叉,突然 変異,自然淘汰によって進化するようにシフトを 改良していく [(枠1),(枠2),(枠3),…,(枠30)] 例) [(Gさん),(Eさん),(Nさん),…,(Eさん)] [(Aさん),(Lさん),(Gさん),…,(Oさん)]
遺伝的アルゴリズムの説明 • シフト表をランダムに30パターン生成 ↓ • シフト表の良さを評価 ↓ • 評価が良かったシフト6個残して後は消す ↓
• 交叉,突然変異させて30個に増やす 200ループ
遺伝的アルゴリズムの説明 • シフト表をランダムに30パターン生成 200ループ [(Gさん),(Eさん),(Nさん),…,(Eさん)] [(Aさん),(Lさん),(Gさん),…,(Oさん)] … (30パターン) [(Rさん),(Aさん),(Nさん),…,(Dさん)]
遺伝的アルゴリズムの説明 • シフト表をランダムに30パターン生成 • シフト表の良さを評価 200ループ [(Gさん),(Eさん),(Nさん),…,(Eさん)] : 300点 [(Aさん),(Lさん),(Gさん),…,(Oさん)]
: 100点 … (30パターン) [(Rさん),(Aさん),(Nさん),…,(Dさん)] : 50点
遺伝的アルゴリズムの説明 • シフト表をランダムに30パターン生成 • シフト表の良さを評価 • 評価が良かったシフト6個残して後は消す 200ループ [(Gさん),(Eさん),(Nさん),…,(Eさん)] :
300点 [(Aさん),(Lさん),(Gさん),…,(Oさん)] : 100点 … (6パターン)
遺伝的アルゴリズムの説明 • シフト表をランダムに30パターン生成 • シフト表の良さを評価 • 評価が良かったシフト6個残して後は消す • 交叉,突然変異させて30個に増やす 200ループ
[(Gさん),(Eさん),(Nさん),…,(Eさん)] [(Aさん),(Lさん),(Gさん),…,(Oさん)] [(Aさん),(Eさん),(Nさん),…,(Oさん)] … (30パターン)
遺伝的アルゴリズムの説明 • シフト表をランダムに30パターン生成 • シフト表の良さを評価 • 評価が良かったシフト6個残して後は消す • 交叉,突然変異させて30個に増やす 200ループ
[(Gさん),(Eさん),(Nさん),…,(Eさん)] [(Aさん),(Lさん),(Gさん),…,(Oさん)] [(Aさん),(Eさん),(Nさん),…,(Oさん)] [(Gさん),(Eさん),(Nさん),…,(Tさん)] … (30パターン)
遺伝的アルゴリズムの説明 • シフト表をランダムに30パターン生成 ↓ • シフト表の良さを評価 ↓ • 評価が良かったシフト6個残して後は消す ↓
• 交叉,突然変異させて30個に増やす 200ループ
遺伝的アルゴリズムの説明 • シフト表をランダムに30パターン生成 ↓ • シフト表の良さを評価 ↓ • 評価が良かったシフト6個残して後は消す ↓
• 交叉,突然変異させて30個に増やす 200ループ 大事なのはここ! 評価する式を立てる
シフト組みの課題 より • 同じ人が2回入らないといけない場合がある • 2回入る場合は日時が離れている方が良い • △,×を考慮するべき
シフト組みの課題 より • 同じ人が2回入らないといけない場合がある →同じ人が2回入ったら 100点 を減らす • 2回入る場合は日時が離れている方が良い →(離れている日数)×1点
を加える • △,×を考慮するべき →△一個につき10000点,×一個につき1000000 点 を減らす
シフト組みの課題 より • 同じ人が2回入らないといけない場合がある →同じ人が2回入ったら 100点 を減らす • 2回入る場合は日時が離れている方が良い →(離れている日数)×1点
を加える • △,×を考慮するべき →△一個につき10000点,×一個につき1000000 点 を減らす 評価式を追加するだけで, 簡単にシフトの決め方を 変えられる!
BOTにして 使ってみる
まとめ • 遺伝的アルゴリズムを使うと,いい感じのシフ トが組める • シフトの組み方の変更が簡単 • BOTにすると非エンジニアも使えて便利