Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Getting started with MLOps

Getting started with MLOps

Getting started with MLOps

shibuiwilliam

March 17, 2022
Tweet

More Decks by shibuiwilliam

Other Decks in Technology

Transcript

  1. 自己紹介 shibui yusuke • 自動運転スタートアップのティアフォー所属 • よろず屋 • MLOpsコミュニティのオーガナイザー •

    もともとクラウド基盤の開発、運用。 • ここ5年くらいMLOpsで仕事。 • Github: @shibuiwilliam • Qiita: @cvusk • FB: yusuke.shibui • 最近やってること: FlutterとIstio cat : 0.55 dog: 0.45 human : 0.70 gorilla : 0.30 物体検知
  2. 機械学習を使ったプロダクト例 画像処理 写真を撮る タイトル入力 説明入力 登録する 自然言語処理 違反検知 登録情報から違反を フィルタリング

    入力情報から 入力補助 超解像による 画質改善 ねこ 検索 協調フィルタリングや ランク学習による 並べ替え あるコンテンツ登録アプリ 画像分類と 検索
  3. 機械学習を使ったプロダクト例 画像処理 写真を撮る タイトル入力 説明入力 登録する 自然言語処理 違反検知 登録情報から違反を フィルタリング

    入力情報から 入力補助 超解像による 画質改善 ねこ 検索 協調フィルタリングや ランク学習による 並べ替え あるコンテンツ登録アプリ 画像分類と 検索タグ どう学習する? →定期的 →不定期 →評価が悪くなったとき いつ推論する? →検索時 →データ登録時 →1時間ごとにまとめて どう評価する? →Accuracy, Confusion Matrix →検索数、CTR、いいね数
  4. 検索を容易にするために画像にタグをつける ネコ 月 ネコ ネコ ネコ ネコ 宗谷岬 空 山

    木 コアラ フライパン カーテン 夜 上海 デザート フルーツ イヌ
  5. 使い方を考える ネコ ネコ イヌ ・・・ ネコ 個数 位置 明るさ 場所

    容易さ 便利さ 画像をアップロード 用途次第 カテゴリを選択 画像分類 フリーテキスト入力 画像分類+自然言語処理 フリーテキストと属性 画像分類+物体検知+ 自然言語処理 画像から類似画像を検索 特徴量抽出+ANN 3 暗 外 上
  6. 評価方法を考える • 目的を手段で要素分解する仮説を立てる • はやめに仮説検証できる技術を選択する 目的のコンテンツを 収集するまでの時間 日時検索 画像認識 目的のコンテンツを

    収集するまでの時間 適切にタグ付けされた コンテンツ数と正解率 目的のコンテンツを 収集するまでの時間 画像分類の Accuracy 物体検知の Ave. Precision
  7. 学習の頻度と推論のタイミングを決める データ収集時 定期バッチ 検索時 不定期 定期的 学習 推論 推論器が常時稼働し ている必要あり

    類似画像検索 バッチジョブが 必要 アノテーションと バッチジョブが必要 ときどきサーバを 起動して実行 データ収集 検索 使う
  8. (参考)機械学習の管理系ライブラリ • モデルの管理 ◦ modeldb: https://github.com/VertaAI/modeldb ◦ keepsake: https://keepsake.ai/ •

    データも管理 ◦ DVC: https://dvc.org/ • 学習の経過も記録 ◦ TensorBoard: https://www.tensorflow.org/tensorboard • 学習パイプラインと経過とモデルを記録 ◦ mlflow: https://mlflow.org/ • 学習パイプラインと基盤 ◦ Metaflow: https://metaflow.org/ ◦ KubeFlow: https://www.kubeflow.org/ • 学習済みモデルを解析 ◦ Tensorflow Model Analysis: https://www.tensorflow.org/tfx/guide/tfma ◦ Netron: https://github.com/lutzroeder/netron
  9. (参考)機械学習の推論ライブラリ • TensorFlow, Keras ◦ サーバサイド:TensorFlow Serving https://www.tensorflow.org/tfx/guide/serving ◦ スマホ:TensorFlow Lite https://www.tensorflow.org/lite?hl=ja

    • PyTorch ◦ サーバサイド:ONNX Runtime https://github.com/microsoft/onnxruntime ◦ サーバサイド:Torch Serve https://pytorch.org/serve/ ◦ スマホ:PyTorch Mobile https://pytorch.org/mobile/home/ • scikit-learn ◦ サーバサイド:ONNX Runtime https://github.com/microsoft/onnxruntime
  10. 間違いを修正する ネコ イヌ 検知方法 通報 他モデルの 推論と比較 閲覧率 見つける 対策

    再学習 特定カテゴリ 新モデル 完全 新モデル 違う アルゴリズム