Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
How to start MLOps
Search
shibuiwilliam
March 17, 2022
Technology
0
160
How to start MLOps
How to start MLOps for DevOpsDays Tokyo 2021.
https://www.devopsdaystokyo.org/
shibuiwilliam
March 17, 2022
Tweet
Share
More Decks by shibuiwilliam
See All by shibuiwilliam
画像生成AIについて
shibuiwilliam
0
15
2026年はチャンキングを極める!
shibuiwilliam
9
2k
R&Dチームを起ち上げる
shibuiwilliam
1
150
AIエージェント開発と活用を加速するワークフロー自動生成への挑戦
shibuiwilliam
5
970
プロンプトやエージェントを自動的に作る方法
shibuiwilliam
17
18k
生成AIシステムとAIエージェントに関する性能や安全性の評価
shibuiwilliam
2
540
AIエージェントによるエンタープライズ向けスライド検索!
shibuiwilliam
4
1.3k
実践マルチモーダル検索!
shibuiwilliam
3
980
生成AI時代のデータ基盤
shibuiwilliam
7
5.2k
Other Decks in Technology
See All in Technology
2026年、サーバーレスの現在地 -「制約と戦う技術」から「当たり前の実行基盤」へ- /serverless2026
slsops
2
240
15 years with Rails and DDD (AI Edition)
andrzejkrzywda
0
190
~Everything as Codeを諦めない~ 後からCDK
mu7889yoon
3
340
StrandsとNeptuneを使ってナレッジグラフを構築する
yakumo
1
110
Introduction to Sansan, inc / Sansan Global Development Center, Inc.
sansan33
PRO
0
3k
SREじゃなかった僕らがenablingを通じて「SRE実践者」になるまでのリアル / SRE Kaigi 2026
aeonpeople
6
2.3k
M&A 後の統合をどう進めるか ─ ナレッジワーク × Poetics が実践した組織とシステムの融合
kworkdev
PRO
1
430
SREのプラクティスを用いた3領域同時 マネジメントへの挑戦 〜SRE・情シス・セキュリティを統合した チーム運営術〜
coconala_engineer
2
640
Bill One急成長の舞台裏 開発組織が直面した失敗と教訓
sansantech
PRO
2
370
MCPでつなぐElasticsearchとLLM - 深夜の障害対応を楽にしたい / Bridging Elasticsearch and LLMs with MCP
sashimimochi
0
170
GSIが複数キー対応したことで、俺達はいったい何が嬉しいのか?
smt7174
3
150
usermode linux without MMU - fosdem2026 kernel devroom
thehajime
0
230
Featured
See All Featured
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
New Earth Scene 8
popppiees
1
1.5k
Designing for humans not robots
tammielis
254
26k
Efficient Content Optimization with Google Search Console & Apps Script
katarinadahlin
PRO
0
320
How STYLIGHT went responsive
nonsquared
100
6k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
The Art of Programming - Codeland 2020
erikaheidi
57
14k
Navigating Team Friction
lara
192
16k
Building Applications with DynamoDB
mza
96
6.9k
Are puppies a ranking factor?
jonoalderson
1
2.7k
Into the Great Unknown - MozCon
thekraken
40
2.3k
Transcript
MLOpsのはじめ方 2021/04/15 shibui yusuke
自己紹介 shibui yusuke • 自動運転スタートアップのティアフォー所属 • MLOpsエンジニア & インフラエンジニア &
データエンジニア • もともとクラウド基盤の開発、運用。 • ここ5年くらいMLOpsで仕事。 • Github: @shibuiwilliam • Qiita: @cvusk • FB: yusuke.shibui • 最近やってること: FlutterとIstio cat : 0.55 dog: 0.45 human : 0.70 gorilla : 0.30 物体検知
CatOps! 放置しているとネコに 椅子を奪われる。 ネコ障害対応(餌、遊ぶ)。 「遊ぶ」を自動化する。 椅子に座っていても ハンズフリーで遊べる。 day 奪 わ
れ 回 数 ハンズフリー導入 飽き始める Dev Data-driven 3 Ops
今日話すこと 1. これまでの機械学習プロジェクトの経験( 5年くらい)から、発生する課題と打開策を説明 2. 機械学習にDevOpsの方法論を応用してプロダクトにインパクトを与える方針を解説 今日話さないこと 1. 機械学習のアルゴリズム、開発方法、基盤の作り方、ライブラリの使い方
なぜ機械学習にDevOpsが必要か
• 機械学習の有用性を試す PoCから次の段階に行くためには機械学習の DevOpsが必要 • 機械学習を含むプロダクトの価値を継続的に引き出すのが MLOps 0->1の次を目指す PoCの数々 ようやく成功した
プロダクト 成長するには なにが足りない? →ビジネス指標から機械学習を評価する →機械学習だけにフォーカスしない
最近の機械学習界隈の状況 • モデル開発から利用へ データ収集 学習 デプロイ 利用
機械学習を使ったプロダクト例 画像処理 写真を撮る タイトル入力 説明入力 登録する 自然言語処理 違反検知 登録情報から違反を フィルタリング
入力情報から 入力補助 超解像による 画質改善 ねこ 検索 協調フィルタリングや ランク学習による 並べ替え あるコンテンツ登録アプリ 画像分類と 検索
機械学習を使ったプロダクトの評価例 画像処理 写真を撮る タイトル入力 説明入力 登録する 自然言語処理 違反検知 登録情報から違反を フィルタリング
入力情報から 入力補助 超解像による 画質改善 ねこ 検索 協調フィルタリングや ランク学習による 並べ替え あるコンテンツ登録アプリ 画像分類と 検索 Accuracy, Precision, Recall →間違って表示される 違反コンテンツと、 非表示にされる 正常コンテンツの比率 Precision, Recall, nDCG →検索数、CTR、 コンバージョン率、 レスポンスタイム、 etc MSE, MAE →コンテンツの滞在時間、 CTR、いいね数、 etc
機械学習と仕組みと事業のライフサイクル コンバージョン コンバージョン率 クリック数 クリック率 表示回数 検索数 レイテンシー 協調フィルタリング ランク学習等
リアルタイム 初期:数ヶ月 更新:数日〜 初期:数ヶ月 更新:数週間〜 データ 実行 システム
課題
機械学習で解決する課題と発生する課題 • 解決する課題:データに基いた自動化により、人間の一部の作業を代替する ◦ 適切な検索結果や商品を上方に表示する、違反行為を検知する、等々 • 発生する課題:機械学習でプロダクトにインパクトを与えるためのワークフローとシステム ◦ 機械学習のためのCI/CD、A/Bテスト、フィードバックループ データ収集
前処理 評価 利用 学習 ビルド フィードバック デプロイ A/Bテスト ロギング
プロダクトを改善できない • 推論システムをリリースしても推論結果を評価してモデルを改善していないケースは多い データ収集 学習 デプロイ 利用
ワークフローを作れない • タスク間を繋げる仕組みや文化を作ることができず、個々のプログラムが非連続に存在する データ収集 前処理 評価 利用 学習 ビルド フィードバック
デプロイ A/Bテスト ロギング
組織的な壁 • 機械学習は機械学習だけではない → 関係チームも多い https://papers.nips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf
組織的な壁(諸説あり) infrastructure engineer, SRE PM ??? ML engineer, data scientist
backend engineer data engineer test engineer, QA engineer
MLOpsのはじめ方
Good • プロダクトの課題からはじめる • 評価からはじめる • リリースからはじめる Bad • 機械学習からはじめる
• 汎用基盤からはじめる • 技術的な課題からはじめる Issueからはじめる
モデルをリリースして効果を記録する 協調フィルタリング ランク学習等 time metrics 導入 コンバージョン コンバージョン率 クリック数 クリック率
表示回数 検索数 レイテンシー
アンチパターン:アサインはリリースまで データ収集 前処理 評価 利用 学習 ビルド フィードバック デプロイ A/Bテスト
ロギング PM ML engineer Backend engineer ? engineer リリース!
機械学習の価値を評価する time metrics 導入 上がっている場合: 1. 維持、改善 2. 新たな施策の導入 下がっている場合:
1. 別モデルの開発 2. 停止判断 コンバージョン 検索数 before ML latency after ML before ML CTR after ML 新 モデル改善 リソース 増強
複数のモデルをリリースする time metrics 導入 導入 現 新 コンバージョン 検索数 before
ML latency after ML before ML CTR after ML latencyを 改善する モデル
アンチパターン:リリース基準がない 新 機械学習の基準 システムの基準 セキュリティの基準 Precision MAE nDCG Accuracy F-score
RMSE ログ 監視 テスト網羅率 負荷 遅延 コストの基準 ・・・ 切り戻す基準
複数のモデルを比較する time metrics 導入 導入 - このリスクを回避したい - 長期的に比較したい 現
コンバージョン 検索数 新
カナリアリリースとA/Bテストを実施する 現 現:90%アクセス 新:10%アクセス 90% 10% group A CTR 新
group B
素早くモデルを増やす 現 現:50%アクセス 新:45%アクセス v2:5%アクセス 50% 45% v1 v2 v3
モデル開発の 技術的負債を 解消する 新 5%
アンチパターン:機械学習だけ更新する ねこ v1 v2 v3 ・・・ 汎用的に使えるモデル 動物の検索に有効 20代ユーザに有効 同じUI/UX
効果ある?
スケールさせるために基盤と自動化する
まとめ
まとめ • 機械学習の価値を測るためには貢献しようとしているビジネス価値の数値化が必要。 • プロダクトの評価から機械学習を改善する。その逆ではない。 • 機械学習が価値を出しているからこそ研究開発や基盤が必要。その逆ではない。
出版します! • AIエンジニアのための 機械学習システムデザインパターン • 2021年5月17日出版 • https://www.amazon.co.jp/dp/4798169447/