Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
My !!con talk
Search
Sasha Laundy
May 17, 2015
Technology
0
560
My !!con talk
Sasha Laundy
May 17, 2015
Tweet
Share
More Decks by Sasha Laundy
See All by Sasha Laundy
Your Brain's API: Getting and Giving Technical Help
slaundy
4
7.7k
HOWTO Make Your Future Data Science Team Love You
slaundy
0
520
HOWTO Make Your Future Data Science Team Love You
slaundy
1
990
Other Decks in Technology
See All in Technology
AI時代だからこそ考える、僕らが本当につくりたいスクラムチーム / A Scrum Team we really want to create in this AI era
takaking22
6
3.5k
OCI Network Firewall 概要
oracle4engineer
PRO
1
7.8k
定期的な価値提供だけじゃない、スクラムが導くチームの共創化 / 20251004 Naoki Takahashi
shift_evolve
PRO
3
300
非エンジニアのあなたもできる&もうやってる!コンテキストエンジニアリング
findy_eventslides
3
910
PLaMoの事後学習を支える技術 / PFN LLMセミナー
pfn
PRO
9
3.8k
生成AIとM5Stack / M5 Japan Tour 2025 Autumn 東京
you
PRO
0
210
後進育成のしくじり〜任せるスキルとリーダーシップの両立〜
matsu0228
7
2.4k
extension 現場で使えるXcodeショートカット一覧
ktombow
0
210
AI Agentと MCP Serverで実現する iOSアプリの 自動テスト作成の効率化
spiderplus_cb
0
500
自動テストのコストと向き合ってみた
qa
0
160
ZOZOのAI活用実践〜社内基盤からサービス応用まで〜
zozotech
PRO
0
170
GA technologiesでのAI-Readyの取り組み@DataOps Night
yuto16
0
270
Featured
See All Featured
How to Ace a Technical Interview
jacobian
280
24k
Automating Front-end Workflow
addyosmani
1371
200k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
358
30k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
9
580
Building Applications with DynamoDB
mza
96
6.6k
Making Projects Easy
brettharned
119
6.4k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
32
2.2k
Rails Girls Zürich Keynote
gr2m
95
14k
Building Better People: How to give real-time feedback that sticks.
wjessup
368
20k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
9
850
Statistics for Hackers
jakevdp
799
220k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
Transcript
Spinning metal platters IN THE CLOUD!!! @sashalaundy
physics + programming ! very little CS
None
None
katrinaebowman on flickr
VERY high level trimmed = FOREACH loaded_data GENERATE userId, website;
! grouped = GROUP trimmed BY userId; ! counted = FOREACH grouped GENERATE group, COUNT(grouped);
None
I get this for FREE! • Mappin’ & reducin’ •
HDFS in the CLOUD! • Clusters AND nodes! • A rockin’ query plan!
None
Write Pigscript Graphs!
None
None
“give me 500 rows where age > 15”
“give me 500 rows where age > 15” Why so
slow?
“Seeking is slower than reading”
??
None
01010110101010001010101000101010101101010101001 GRACE50VIRGINIAALAN45ENGLANDADA30ENGLAND
None
None
READING: grabbing contiguous sections of data
SEEKING: grabbing scattered sections of data
“Seeking is slower than reading”
None
“give me 500 rows where age > 15” GRACE50VIRGINIAALAN45ENGLANDADA30ENGLAND
MIND. BLOWN.
in my PIGSCRIPTS I had to worry about a spinning
METAL PLATTER somewhere in VIRGINIA!!!!
None
• Various schema? MONGO • Fast search? ELASTICSEARCH • Keep
history? DATOMIC • Want very fast analytics queries? REDSHIFT.
REDSHIFT production backend for your website! copy of your database
for your data team to play with!!
analytics needs lots of AGGREGATION ! like SUM, AVG, or
COUNT across ROWS
GRACE50VIRGINIAALAN45ENGLANDADA30ENGLAND So lots of seeking? GOSH DARN IT! but what
if…
GRACEALANADA504530VIRGINIAENGLANDENGLAND READING! ! YAYYYYYY!!!
GRACEALANADA504530VIRGINIAENGLANDENGLAND “columnar storage”
What’s faster than reading AND seeking? IGNORING
block min max 1 1 6 2 7 12 3
13 340
Redshift has lots more… • NODES so you can compute
in parallel • cool QUERY PLANS based on your actual data! • Not actually a database. “Managed data warehouse service in the cloud” • So blazing fast!
Really fast! …how fast? • 21,454,134 rows • COUNT(*) •
Postgres: 586,931.216 ms (10 minutes) • Redshift: 1,561.359 ms (1.5 seconds) 376 times faster! from http://dailytechnology.net/2013/08/03/redshift-what-you-need-to-know/
376x isn’t cool. You know what’s cool? 100,000x Instead of
native Python, a matrix! 100x Speed from OpenBLAS compared to numpy 10x Parallelization (for free from OpenBLAS) 10x 100,000x
redshift is fast
hardware matters
databases are cool
THANKS!!!! @sashalaundy sasha.io