Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
My !!con talk
Search
Sasha Laundy
May 17, 2015
Technology
0
550
My !!con talk
Sasha Laundy
May 17, 2015
Tweet
Share
More Decks by Sasha Laundy
See All by Sasha Laundy
Your Brain's API: Getting and Giving Technical Help
slaundy
4
7.7k
HOWTO Make Your Future Data Science Team Love You
slaundy
0
520
HOWTO Make Your Future Data Science Team Love You
slaundy
1
980
Other Decks in Technology
See All in Technology
【Startup CTO of the Year 2024 / Audience Award】アセンド取締役CTO 丹羽健
niwatakeru
0
1.3k
TypeScriptの次なる大進化なるか!? 条件型を返り値とする関数の型推論
uhyo
2
1.7k
SREが投資するAIOps ~ペアーズにおけるLLM for Developerへの取り組み~
takumiogawa
1
380
安心してください、日本語使えますよ―Ubuntu日本語Remix提供休止に寄せて― 2024-11-17
nobutomurata
1
1k
オープンソースAIとは何か? --「オープンソースAIの定義 v1.0」詳細解説
shujisado
9
1.1k
TanStack Routerに移行するのかい しないのかい、どっちなんだい! / Are you going to migrate to TanStack Router or not? Which one is it?
kaminashi
0
600
OTelCol_TailSampling_and_SpanMetrics
gumamon
1
180
初心者向けAWS Securityの勉強会mini Security-JAWSを9ヶ月ぐらい実施してきての近況
cmusudakeisuke
0
130
rootlessコンテナのすゝめ - 研究室サーバーでもできる安全なコンテナ管理
kitsuya0828
3
390
社内で最大の技術的負債のリファクタリングに取り組んだお話し
kidooonn
1
550
Amplify Gen2 Deep Dive / バックエンドの型をいかにしてフロントエンドへ伝えるか #TSKaigi #TSKaigiKansai #AWSAmplifyJP
tacck
PRO
0
390
Making your applications cross-environment - OSCG 2024 NA
salaboy
0
190
Featured
See All Featured
4 Signs Your Business is Dying
shpigford
180
21k
It's Worth the Effort
3n
183
27k
KATA
mclloyd
29
14k
Gamification - CAS2011
davidbonilla
80
5k
Making Projects Easy
brettharned
115
5.9k
Embracing the Ebb and Flow
colly
84
4.5k
Intergalactic Javascript Robots from Outer Space
tanoku
269
27k
GraphQLの誤解/rethinking-graphql
sonatard
67
10k
How to Ace a Technical Interview
jacobian
276
23k
We Have a Design System, Now What?
morganepeng
50
7.2k
Product Roadmaps are Hard
iamctodd
PRO
49
11k
The Cult of Friendly URLs
andyhume
78
6k
Transcript
Spinning metal platters IN THE CLOUD!!! @sashalaundy
physics + programming ! very little CS
None
None
katrinaebowman on flickr
VERY high level trimmed = FOREACH loaded_data GENERATE userId, website;
! grouped = GROUP trimmed BY userId; ! counted = FOREACH grouped GENERATE group, COUNT(grouped);
None
I get this for FREE! • Mappin’ & reducin’ •
HDFS in the CLOUD! • Clusters AND nodes! • A rockin’ query plan!
None
Write Pigscript Graphs!
None
None
“give me 500 rows where age > 15”
“give me 500 rows where age > 15” Why so
slow?
“Seeking is slower than reading”
??
None
01010110101010001010101000101010101101010101001 GRACE50VIRGINIAALAN45ENGLANDADA30ENGLAND
None
None
READING: grabbing contiguous sections of data
SEEKING: grabbing scattered sections of data
“Seeking is slower than reading”
None
“give me 500 rows where age > 15” GRACE50VIRGINIAALAN45ENGLANDADA30ENGLAND
MIND. BLOWN.
in my PIGSCRIPTS I had to worry about a spinning
METAL PLATTER somewhere in VIRGINIA!!!!
None
• Various schema? MONGO • Fast search? ELASTICSEARCH • Keep
history? DATOMIC • Want very fast analytics queries? REDSHIFT.
REDSHIFT production backend for your website! copy of your database
for your data team to play with!!
analytics needs lots of AGGREGATION ! like SUM, AVG, or
COUNT across ROWS
GRACE50VIRGINIAALAN45ENGLANDADA30ENGLAND So lots of seeking? GOSH DARN IT! but what
if…
GRACEALANADA504530VIRGINIAENGLANDENGLAND READING! ! YAYYYYYY!!!
GRACEALANADA504530VIRGINIAENGLANDENGLAND “columnar storage”
What’s faster than reading AND seeking? IGNORING
block min max 1 1 6 2 7 12 3
13 340
Redshift has lots more… • NODES so you can compute
in parallel • cool QUERY PLANS based on your actual data! • Not actually a database. “Managed data warehouse service in the cloud” • So blazing fast!
Really fast! …how fast? • 21,454,134 rows • COUNT(*) •
Postgres: 586,931.216 ms (10 minutes) • Redshift: 1,561.359 ms (1.5 seconds) 376 times faster! from http://dailytechnology.net/2013/08/03/redshift-what-you-need-to-know/
376x isn’t cool. You know what’s cool? 100,000x Instead of
native Python, a matrix! 100x Speed from OpenBLAS compared to numpy 10x Parallelization (for free from OpenBLAS) 10x 100,000x
redshift is fast
hardware matters
databases are cool
THANKS!!!! @sashalaundy sasha.io