Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
My !!con talk
Search
Sasha Laundy
May 17, 2015
Technology
0
560
My !!con talk
Sasha Laundy
May 17, 2015
Tweet
Share
More Decks by Sasha Laundy
See All by Sasha Laundy
Your Brain's API: Getting and Giving Technical Help
slaundy
4
7.7k
HOWTO Make Your Future Data Science Team Love You
slaundy
0
520
HOWTO Make Your Future Data Science Team Love You
slaundy
1
990
Other Decks in Technology
See All in Technology
Kiro と Q Dev で 同じゲームを作らせてみた
r3_yamauchi
PRO
1
120
リモートワークで心掛けていること 〜AI活用編〜
naoki85
0
190
工業高校で学習したとあるエンジニアのキャリアの話
shirayanagiryuji
0
120
Autonomous Database Serverless 技術詳細 / adb-s_technical_detail_jp
oracle4engineer
PRO
18
52k
AI時代の大規模データ活用とセキュリティ戦略
ken5scal
1
260
JAWS AI/ML #30 AI コーディング IDE "Kiro" を触ってみよう
inariku
3
400
いかにして命令の入れ替わりについて心配するのをやめ、メモリモデルを愛するようになったか(改)
nullpo_head
7
2.7k
僕たちが「開発しやすさ」を求め 模索し続けたアーキテクチャ #アーキテクチャ勉強会_findy
bengo4com
0
2.6k
Amazon Q と『音楽』-ゲーム音楽もAmazonQで作成してみた感想-
senseofunity129
0
170
コミュニティと計画的偶発性理論 - 出会いが人生を変える / Life-Changing Encounters
soudai
PRO
7
760
Oracle Base Database Service:サービス概要のご紹介
oracle4engineer
PRO
1
20k
datadog-distribution-of-opentelemetry-collector-intro
tetsuya28
0
120
Featured
See All Featured
How GitHub (no longer) Works
holman
314
140k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
183
54k
The Pragmatic Product Professional
lauravandoore
36
6.8k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
Thoughts on Productivity
jonyablonski
69
4.8k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
358
30k
A designer walks into a library…
pauljervisheath
207
24k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.8k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
A better future with KSS
kneath
239
17k
Imperfection Machines: The Place of Print at Facebook
scottboms
268
13k
Transcript
Spinning metal platters IN THE CLOUD!!! @sashalaundy
physics + programming ! very little CS
None
None
katrinaebowman on flickr
VERY high level trimmed = FOREACH loaded_data GENERATE userId, website;
! grouped = GROUP trimmed BY userId; ! counted = FOREACH grouped GENERATE group, COUNT(grouped);
None
I get this for FREE! • Mappin’ & reducin’ •
HDFS in the CLOUD! • Clusters AND nodes! • A rockin’ query plan!
None
Write Pigscript Graphs!
None
None
“give me 500 rows where age > 15”
“give me 500 rows where age > 15” Why so
slow?
“Seeking is slower than reading”
??
None
01010110101010001010101000101010101101010101001 GRACE50VIRGINIAALAN45ENGLANDADA30ENGLAND
None
None
READING: grabbing contiguous sections of data
SEEKING: grabbing scattered sections of data
“Seeking is slower than reading”
None
“give me 500 rows where age > 15” GRACE50VIRGINIAALAN45ENGLANDADA30ENGLAND
MIND. BLOWN.
in my PIGSCRIPTS I had to worry about a spinning
METAL PLATTER somewhere in VIRGINIA!!!!
None
• Various schema? MONGO • Fast search? ELASTICSEARCH • Keep
history? DATOMIC • Want very fast analytics queries? REDSHIFT.
REDSHIFT production backend for your website! copy of your database
for your data team to play with!!
analytics needs lots of AGGREGATION ! like SUM, AVG, or
COUNT across ROWS
GRACE50VIRGINIAALAN45ENGLANDADA30ENGLAND So lots of seeking? GOSH DARN IT! but what
if…
GRACEALANADA504530VIRGINIAENGLANDENGLAND READING! ! YAYYYYYY!!!
GRACEALANADA504530VIRGINIAENGLANDENGLAND “columnar storage”
What’s faster than reading AND seeking? IGNORING
block min max 1 1 6 2 7 12 3
13 340
Redshift has lots more… • NODES so you can compute
in parallel • cool QUERY PLANS based on your actual data! • Not actually a database. “Managed data warehouse service in the cloud” • So blazing fast!
Really fast! …how fast? • 21,454,134 rows • COUNT(*) •
Postgres: 586,931.216 ms (10 minutes) • Redshift: 1,561.359 ms (1.5 seconds) 376 times faster! from http://dailytechnology.net/2013/08/03/redshift-what-you-need-to-know/
376x isn’t cool. You know what’s cool? 100,000x Instead of
native Python, a matrix! 100x Speed from OpenBLAS compared to numpy 10x Parallelization (for free from OpenBLAS) 10x 100,000x
redshift is fast
hardware matters
databases are cool
THANKS!!!! @sashalaundy sasha.io