Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
My !!con talk
Search
Sasha Laundy
May 17, 2015
Technology
0
570
My !!con talk
Sasha Laundy
May 17, 2015
Tweet
Share
More Decks by Sasha Laundy
See All by Sasha Laundy
Your Brain's API: Getting and Giving Technical Help
slaundy
4
7.7k
HOWTO Make Your Future Data Science Team Love You
slaundy
0
520
HOWTO Make Your Future Data Science Team Love You
slaundy
1
1k
Other Decks in Technology
See All in Technology
GitHub Issue Templates + Coding Agentで簡単みんなでIaC/Easy IaC for Everyone with GitHub Issue Templates + Coding Agent
aeonpeople
1
220
Context Engineeringが企業で不可欠になる理由
hirosatogamo
PRO
3
570
AWS Network Firewall Proxyを触ってみた
nagisa53
1
230
StrandsとNeptuneを使ってナレッジグラフを構築する
yakumo
1
110
こんなところでも(地味に)活躍するImage Modeさんを知ってるかい?- Image Mode for OpenShift -
tsukaman
0
130
名刺メーカーDevグループ 紹介資料
sansan33
PRO
0
1k
超初心者からでも大丈夫!オープンソース半導体の楽しみ方〜今こそ!オレオレチップをつくろう〜
keropiyo
0
110
茨城の思い出を振り返る ~CDKのセキュリティを添えて~ / 20260201 Mitsutoshi Matsuo
shift_evolve
PRO
1
260
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
6
68k
10Xにおける品質保証活動の全体像と改善 #no_more_wait_for_test
nihonbuson
PRO
2
240
All About Sansan – for New Global Engineers
sansan33
PRO
1
1.3k
外部キー制約の知っておいて欲しいこと - RDBMSを正しく使うために必要なこと / FOREIGN KEY Night
soudai
PRO
12
5.4k
Featured
See All Featured
Public Speaking Without Barfing On Your Shoes - THAT 2023
reverentgeek
1
300
Everyday Curiosity
cassininazir
0
130
What does AI have to do with Human Rights?
axbom
PRO
0
2k
A better future with KSS
kneath
240
18k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
Thoughts on Productivity
jonyablonski
74
5k
Odyssey Design
rkendrick25
PRO
1
490
30 Presentation Tips
portentint
PRO
1
210
RailsConf 2023
tenderlove
30
1.3k
Leo the Paperboy
mayatellez
4
1.4k
Impact Scores and Hybrid Strategies: The future of link building
tamaranovitovic
0
200
Transcript
Spinning metal platters IN THE CLOUD!!! @sashalaundy
physics + programming ! very little CS
None
None
katrinaebowman on flickr
VERY high level trimmed = FOREACH loaded_data GENERATE userId, website;
! grouped = GROUP trimmed BY userId; ! counted = FOREACH grouped GENERATE group, COUNT(grouped);
None
I get this for FREE! • Mappin’ & reducin’ •
HDFS in the CLOUD! • Clusters AND nodes! • A rockin’ query plan!
None
Write Pigscript Graphs!
None
None
“give me 500 rows where age > 15”
“give me 500 rows where age > 15” Why so
slow?
“Seeking is slower than reading”
??
None
01010110101010001010101000101010101101010101001 GRACE50VIRGINIAALAN45ENGLANDADA30ENGLAND
None
None
READING: grabbing contiguous sections of data
SEEKING: grabbing scattered sections of data
“Seeking is slower than reading”
None
“give me 500 rows where age > 15” GRACE50VIRGINIAALAN45ENGLANDADA30ENGLAND
MIND. BLOWN.
in my PIGSCRIPTS I had to worry about a spinning
METAL PLATTER somewhere in VIRGINIA!!!!
None
• Various schema? MONGO • Fast search? ELASTICSEARCH • Keep
history? DATOMIC • Want very fast analytics queries? REDSHIFT.
REDSHIFT production backend for your website! copy of your database
for your data team to play with!!
analytics needs lots of AGGREGATION ! like SUM, AVG, or
COUNT across ROWS
GRACE50VIRGINIAALAN45ENGLANDADA30ENGLAND So lots of seeking? GOSH DARN IT! but what
if…
GRACEALANADA504530VIRGINIAENGLANDENGLAND READING! ! YAYYYYYY!!!
GRACEALANADA504530VIRGINIAENGLANDENGLAND “columnar storage”
What’s faster than reading AND seeking? IGNORING
block min max 1 1 6 2 7 12 3
13 340
Redshift has lots more… • NODES so you can compute
in parallel • cool QUERY PLANS based on your actual data! • Not actually a database. “Managed data warehouse service in the cloud” • So blazing fast!
Really fast! …how fast? • 21,454,134 rows • COUNT(*) •
Postgres: 586,931.216 ms (10 minutes) • Redshift: 1,561.359 ms (1.5 seconds) 376 times faster! from http://dailytechnology.net/2013/08/03/redshift-what-you-need-to-know/
376x isn’t cool. You know what’s cool? 100,000x Instead of
native Python, a matrix! 100x Speed from OpenBLAS compared to numpy 10x Parallelization (for free from OpenBLAS) 10x 100,000x
redshift is fast
hardware matters
databases are cool
THANKS!!!! @sashalaundy sasha.io