Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
My !!con talk
Search
Sasha Laundy
May 17, 2015
Technology
0
570
My !!con talk
Sasha Laundy
May 17, 2015
Tweet
Share
More Decks by Sasha Laundy
See All by Sasha Laundy
Your Brain's API: Getting and Giving Technical Help
slaundy
4
7.7k
HOWTO Make Your Future Data Science Team Love You
slaundy
0
520
HOWTO Make Your Future Data Science Team Love You
slaundy
1
1k
Other Decks in Technology
See All in Technology
こんなところでも(地味に)活躍するImage Modeさんを知ってるかい?- Image Mode for OpenShift -
tsukaman
0
130
Embedded SREの終わりを設計する 「なんとなく」から計画的な自立支援へ
sansantech
PRO
3
2.4k
Data Hubグループ 紹介資料
sansan33
PRO
0
2.7k
クレジットカード決済基盤を支えるSRE - 厳格な監査とSRE運用の両立 (SRE Kaigi 2026)
capytan
6
2.7k
Context Engineeringの取り組み
nutslove
0
340
Red Hat OpenStack Services on OpenShift
tamemiya
0
100
外部キー制約の知っておいて欲しいこと - RDBMSを正しく使うために必要なこと / FOREIGN KEY Night
soudai
PRO
12
5.4k
予期せぬコストの急増を障害のように扱う――「コスト版ポストモーテム」の導入とその後の改善
muziyoshiz
1
1.8k
usermode linux without MMU - fosdem2026 kernel devroom
thehajime
0
230
MCPでつなぐElasticsearchとLLM - 深夜の障害対応を楽にしたい / Bridging Elasticsearch and LLMs with MCP
sashimimochi
0
170
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
10k
レガシー共有バッチ基盤への挑戦 - SREドリブンなリアーキテクチャリングの取り組み
tatsukoni
0
210
Featured
See All Featured
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
37
6.3k
Evolving SEO for Evolving Search Engines
ryanjones
0
120
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
57
Sam Torres - BigQuery for SEOs
techseoconnect
PRO
0
180
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
2.1k
Conquering PDFs: document understanding beyond plain text
inesmontani
PRO
4
2.3k
Skip the Path - Find Your Career Trail
mkilby
0
55
Heart Work Chapter 1 - Part 1
lfama
PRO
5
35k
Joys of Absence: A Defence of Solitary Play
codingconduct
1
290
The Language of Interfaces
destraynor
162
26k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Lightning Talk: Beautiful Slides for Beginners
inesmontani
PRO
1
440
Transcript
Spinning metal platters IN THE CLOUD!!! @sashalaundy
physics + programming ! very little CS
None
None
katrinaebowman on flickr
VERY high level trimmed = FOREACH loaded_data GENERATE userId, website;
! grouped = GROUP trimmed BY userId; ! counted = FOREACH grouped GENERATE group, COUNT(grouped);
None
I get this for FREE! • Mappin’ & reducin’ •
HDFS in the CLOUD! • Clusters AND nodes! • A rockin’ query plan!
None
Write Pigscript Graphs!
None
None
“give me 500 rows where age > 15”
“give me 500 rows where age > 15” Why so
slow?
“Seeking is slower than reading”
??
None
01010110101010001010101000101010101101010101001 GRACE50VIRGINIAALAN45ENGLANDADA30ENGLAND
None
None
READING: grabbing contiguous sections of data
SEEKING: grabbing scattered sections of data
“Seeking is slower than reading”
None
“give me 500 rows where age > 15” GRACE50VIRGINIAALAN45ENGLANDADA30ENGLAND
MIND. BLOWN.
in my PIGSCRIPTS I had to worry about a spinning
METAL PLATTER somewhere in VIRGINIA!!!!
None
• Various schema? MONGO • Fast search? ELASTICSEARCH • Keep
history? DATOMIC • Want very fast analytics queries? REDSHIFT.
REDSHIFT production backend for your website! copy of your database
for your data team to play with!!
analytics needs lots of AGGREGATION ! like SUM, AVG, or
COUNT across ROWS
GRACE50VIRGINIAALAN45ENGLANDADA30ENGLAND So lots of seeking? GOSH DARN IT! but what
if…
GRACEALANADA504530VIRGINIAENGLANDENGLAND READING! ! YAYYYYYY!!!
GRACEALANADA504530VIRGINIAENGLANDENGLAND “columnar storage”
What’s faster than reading AND seeking? IGNORING
block min max 1 1 6 2 7 12 3
13 340
Redshift has lots more… • NODES so you can compute
in parallel • cool QUERY PLANS based on your actual data! • Not actually a database. “Managed data warehouse service in the cloud” • So blazing fast!
Really fast! …how fast? • 21,454,134 rows • COUNT(*) •
Postgres: 586,931.216 ms (10 minutes) • Redshift: 1,561.359 ms (1.5 seconds) 376 times faster! from http://dailytechnology.net/2013/08/03/redshift-what-you-need-to-know/
376x isn’t cool. You know what’s cool? 100,000x Instead of
native Python, a matrix! 100x Speed from OpenBLAS compared to numpy 10x Parallelization (for free from OpenBLAS) 10x 100,000x
redshift is fast
hardware matters
databases are cool
THANKS!!!! @sashalaundy sasha.io