Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Fast Abstractive Summarization With Reinforce S...
Search
sobamchan
April 09, 2019
Science
0
130
Fast Abstractive Summarization With Reinforce Selected Sentence Rewriting
Not detailed.
sobamchan
April 09, 2019
Tweet
Share
More Decks by sobamchan
See All by sobamchan
Knowledge Supports Visual Language Grounding_ A Case Study on Colour Terms
sobamchan
1
940
Event Representations for Automated Story Generation with Deep Neural Nets
sobamchan
0
81
Fader Networks: Manipulating Images by Sliding Attributes
sobamchan
1
330
Other Decks in Science
See All in Science
デジタルアーカイブの教育利用促進を目指したメタデータLOD基盤に関する研究 / Research on a Metadata LOD Platform for Promoting Educational Uses of Digital Archives
masao
0
110
[Paper Introduction] From Bytes to Ideas:Language Modeling with Autoregressive U-Nets
haruumiomoto
0
160
2025-05-31-pycon_italia
sofievl
0
100
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
1k
データマイニング - コミュニティ発見
trycycle
PRO
0
170
Celebrate UTIG: Staff and Student Awards 2025
utig
0
330
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
430
2025-06-11-ai_belgium
sofievl
1
190
機械学習 - K-means & 階層的クラスタリング
trycycle
PRO
0
1.1k
ド文系だった私が、 KaggleのNCAAコンペでソロ金取れるまで
wakamatsu_takumu
2
1.6k
機械学習 - DBSCAN
trycycle
PRO
0
1.2k
防災デジタル分野での官民共創の取り組み (1)防災DX官民共創をどう進めるか
ditccsugii
0
360
Featured
See All Featured
Rebuilding a faster, lazier Slack
samanthasiow
84
9.3k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8k
Automating Front-end Workflow
addyosmani
1371
200k
How STYLIGHT went responsive
nonsquared
100
5.9k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Code Reviewing Like a Champion
maltzj
527
40k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
Typedesign – Prime Four
hannesfritz
42
2.9k
Producing Creativity
orderedlist
PRO
348
40k
Designing for Performance
lara
610
69k
The Language of Interfaces
destraynor
162
25k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
Transcript
Fast Abstractive Summarization With Reinforce Selected Sentence Rewriting M2 竹下
颯太郎
Abstract どんなもの? Abstractive summarizationに対して policy gradient法を適応して、階層的に積 み上げた2つのNNsで取り組んだ。 2 先行研究と比較してなにがすごい? salient
sentenceを選択するのと、 それを短くして書き換えるっていう微分不可能な 2つのタスクを、 Sentence-level policy gradientで同時に最適 化した。
“Summarization” Abstractive 山田は彼の犬と踊るのが好きだ。 ある日、山田は彼の犬に隠れて六本木の ダンスクラブに遊びに行った。 それを知った犬は激怒した。 ↓ 山田はダンス好きの犬を怒らせた。 • より内容を汲んだ要約文を生成する
ことができる。 • 生成自体が困難。 3 Extractive 山田は彼の犬と踊るのが好きだ。 ある日、山田は彼の犬に隠れて六本木の ダンスクラブに遊びに行った。 それを知った犬は激怒した。 ↓ それを知った犬は激怒した。 • 文が崩壊することはない。 • 柔軟性に限りがある。
技術や手法のキモはどこ? 1. CNN, RNNで階層的にDocumentをencode (Extractor)。 2. 得られた特徴量から重要な文を選択。 3. 2. を受け取ったAbstractorはEncoder-Decoder
w/ attn, copy mechanismで要 約文(gt)に変換。 Maximum Likelihood • Extractor: 入力D内の文中でgtに最も近い(Rouge)文を教師として分類問題として 学習。 • Abstractor: 普通にcross-entropy lossを最小化するように学習。 Reinforce • Rougeを直接最大化するように、報酬として Extractorを最適化。 4
技術や手法のキモはどこ? 1. CNN, RNNで階層的にDocumentをencode (Extractor)。 2. 得られた特徴量から重要な文を選択。 3. 2. を受け取ったAbstractorはEncoder-Decoder
w/ attn, copy mechanismで要 約文(gt)に変換。 Maximum Likelihood • Extractor: 入力D内の文中でgtに最も近い(Rouge)文を教師として分類問題として 学習。 • Abstractor: 普通にcross-entropy lossを最小化するように学習。 Reinforce • Rougeを直接最大化するように、報酬として Extractorを最適化。 5
技術や手法のキモはどこ? 1. CNN, RNNで階層的にDocumentをencode (Extractor)。 2. 得られた特徴量から重要な文を選択。 3. 2. を受け取ったAbstractorはEncoder-Decoder
w/ attn, copy mechanismで要 約文(gt)に変換。 Maximum Likelihood • Extractor: 入力D内の文中でgtに最も近い(Rouge)文を教師として分類問題として 学習。 • Abstractor: 普通にcross-entropy lossを最小化するように学習。 Reinforce • Rougeを直接最大化するように、報酬として Extractorを最適化。 6
SOTA CNN/Daily Mail for training DUC-2002 for testing 7
SOTA CNN/Daily Mail for training DUC-2002 for testing 8