Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Fast Abstractive Summarization With Reinforce S...
Search
sobamchan
April 09, 2019
Science
0
130
Fast Abstractive Summarization With Reinforce Selected Sentence Rewriting
Not detailed.
sobamchan
April 09, 2019
Tweet
Share
More Decks by sobamchan
See All by sobamchan
Knowledge Supports Visual Language Grounding_ A Case Study on Colour Terms
sobamchan
1
940
Event Representations for Automated Story Generation with Deep Neural Nets
sobamchan
0
81
Fader Networks: Manipulating Images by Sliding Attributes
sobamchan
1
330
Other Decks in Science
See All in Science
Transport information Geometry: Current and Future II
lwc2017
0
220
【RSJ2025】PAMIQ Core: リアルタイム継続学習のための⾮同期推論・学習フレームワーク
gesonanko
0
270
高校生就活へのDA導入の提案
shunyanoda
0
6.1k
Optimization of the Tournament Format for the Nationwide High School Kyudo Competition in Japan
konakalab
0
120
主成分分析に基づく教師なし特徴抽出法を用いたコラーゲン-グリコサミノグリカンメッシュの遺伝子発現への影響
tagtag
0
110
知能とはなにかーヒトとAIのあいだー
tagtag
0
150
データマイニング - ノードの中心性
trycycle
PRO
0
300
データマイニング - グラフデータと経路
trycycle
PRO
1
240
データから見る勝敗の法則 / The principle of victory discovered by science (open lecture in NSSU)
konakalab
1
220
データベース15: ビッグデータ時代のデータベース
trycycle
PRO
0
380
Celebrate UTIG: Staff and Student Awards 2025
utig
0
330
LayerXにおける業務の完全自動運転化に向けたAI技術活用事例 / layerx-ai-jsai2025
shimacos
2
19k
Featured
See All Featured
Testing 201, or: Great Expectations
jmmastey
46
7.8k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Bash Introduction
62gerente
615
210k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.7k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Why You Should Never Use an ORM
jnunemaker
PRO
60
9.6k
For a Future-Friendly Web
brad_frost
180
10k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.2k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
670
Transcript
Fast Abstractive Summarization With Reinforce Selected Sentence Rewriting M2 竹下
颯太郎
Abstract どんなもの? Abstractive summarizationに対して policy gradient法を適応して、階層的に積 み上げた2つのNNsで取り組んだ。 2 先行研究と比較してなにがすごい? salient
sentenceを選択するのと、 それを短くして書き換えるっていう微分不可能な 2つのタスクを、 Sentence-level policy gradientで同時に最適 化した。
“Summarization” Abstractive 山田は彼の犬と踊るのが好きだ。 ある日、山田は彼の犬に隠れて六本木の ダンスクラブに遊びに行った。 それを知った犬は激怒した。 ↓ 山田はダンス好きの犬を怒らせた。 • より内容を汲んだ要約文を生成する
ことができる。 • 生成自体が困難。 3 Extractive 山田は彼の犬と踊るのが好きだ。 ある日、山田は彼の犬に隠れて六本木の ダンスクラブに遊びに行った。 それを知った犬は激怒した。 ↓ それを知った犬は激怒した。 • 文が崩壊することはない。 • 柔軟性に限りがある。
技術や手法のキモはどこ? 1. CNN, RNNで階層的にDocumentをencode (Extractor)。 2. 得られた特徴量から重要な文を選択。 3. 2. を受け取ったAbstractorはEncoder-Decoder
w/ attn, copy mechanismで要 約文(gt)に変換。 Maximum Likelihood • Extractor: 入力D内の文中でgtに最も近い(Rouge)文を教師として分類問題として 学習。 • Abstractor: 普通にcross-entropy lossを最小化するように学習。 Reinforce • Rougeを直接最大化するように、報酬として Extractorを最適化。 4
技術や手法のキモはどこ? 1. CNN, RNNで階層的にDocumentをencode (Extractor)。 2. 得られた特徴量から重要な文を選択。 3. 2. を受け取ったAbstractorはEncoder-Decoder
w/ attn, copy mechanismで要 約文(gt)に変換。 Maximum Likelihood • Extractor: 入力D内の文中でgtに最も近い(Rouge)文を教師として分類問題として 学習。 • Abstractor: 普通にcross-entropy lossを最小化するように学習。 Reinforce • Rougeを直接最大化するように、報酬として Extractorを最適化。 5
技術や手法のキモはどこ? 1. CNN, RNNで階層的にDocumentをencode (Extractor)。 2. 得られた特徴量から重要な文を選択。 3. 2. を受け取ったAbstractorはEncoder-Decoder
w/ attn, copy mechanismで要 約文(gt)に変換。 Maximum Likelihood • Extractor: 入力D内の文中でgtに最も近い(Rouge)文を教師として分類問題として 学習。 • Abstractor: 普通にcross-entropy lossを最小化するように学習。 Reinforce • Rougeを直接最大化するように、報酬として Extractorを最適化。 6
SOTA CNN/Daily Mail for training DUC-2002 for testing 7
SOTA CNN/Daily Mail for training DUC-2002 for testing 8