Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Fast Abstractive Summarization With Reinforce S...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
sobamchan
April 09, 2019
Science
0
130
Fast Abstractive Summarization With Reinforce Selected Sentence Rewriting
Not detailed.
sobamchan
April 09, 2019
Tweet
Share
More Decks by sobamchan
See All by sobamchan
Knowledge Supports Visual Language Grounding_ A Case Study on Colour Terms
sobamchan
1
950
Event Representations for Automated Story Generation with Deep Neural Nets
sobamchan
0
85
Fader Networks: Manipulating Images by Sliding Attributes
sobamchan
1
330
Other Decks in Science
See All in Science
PPIのみを用いたAIによる薬剤–遺伝子–疾患 相互作用の同定
tagtag
PRO
0
160
データから見る勝敗の法則 / The principle of victory discovered by science (open lecture in NSSU)
konakalab
1
270
ド文系だった私が、 KaggleのNCAAコンペでソロ金取れるまで
wakamatsu_takumu
2
1.9k
イロレーティングを活用した関東大学サッカーの定量的実力評価 / A quantitative performance evaluation of Kanto University Football Association using Elo rating
konakalab
0
190
サイコロで理解する原子核崩壊と拡散現象 〜単純化されたモデルで本質を理解する〜
syotasasaki593876
0
150
MCMCのR-hatは分散分析である
moricup
0
590
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
940
タンパク質間相互作⽤を利⽤した⼈⼯知能による新しい薬剤遺伝⼦-疾患相互作⽤の同定
tagtag
PRO
0
140
HDC tutorial
michielstock
1
390
データベース06: SQL (3/3) 副問い合わせ
trycycle
PRO
1
720
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
210
Kaggle: NeurIPS - Open Polymer Prediction 2025 コンペ 反省会
calpis10000
0
380
Featured
See All Featured
The #1 spot is gone: here's how to win anyway
tamaranovitovic
2
950
From π to Pie charts
rasagy
0
130
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
79
Visual Storytelling: How to be a Superhuman Communicator
reverentgeek
2
430
Organizational Design Perspectives: An Ontology of Organizational Design Elements
kimpetersen
PRO
1
470
GraphQLの誤解/rethinking-graphql
sonatard
74
11k
The Cost Of JavaScript in 2023
addyosmani
55
9.5k
Designing for Performance
lara
610
70k
Leadership Guide Workshop - DevTernity 2021
reverentgeek
1
200
Navigating Team Friction
lara
192
16k
Dominate Local Search Results - an insider guide to GBP, reviews, and Local SEO
greggifford
PRO
0
79
Build The Right Thing And Hit Your Dates
maggiecrowley
39
3k
Transcript
Fast Abstractive Summarization With Reinforce Selected Sentence Rewriting M2 竹下
颯太郎
Abstract どんなもの? Abstractive summarizationに対して policy gradient法を適応して、階層的に積 み上げた2つのNNsで取り組んだ。 2 先行研究と比較してなにがすごい? salient
sentenceを選択するのと、 それを短くして書き換えるっていう微分不可能な 2つのタスクを、 Sentence-level policy gradientで同時に最適 化した。
“Summarization” Abstractive 山田は彼の犬と踊るのが好きだ。 ある日、山田は彼の犬に隠れて六本木の ダンスクラブに遊びに行った。 それを知った犬は激怒した。 ↓ 山田はダンス好きの犬を怒らせた。 • より内容を汲んだ要約文を生成する
ことができる。 • 生成自体が困難。 3 Extractive 山田は彼の犬と踊るのが好きだ。 ある日、山田は彼の犬に隠れて六本木の ダンスクラブに遊びに行った。 それを知った犬は激怒した。 ↓ それを知った犬は激怒した。 • 文が崩壊することはない。 • 柔軟性に限りがある。
技術や手法のキモはどこ? 1. CNN, RNNで階層的にDocumentをencode (Extractor)。 2. 得られた特徴量から重要な文を選択。 3. 2. を受け取ったAbstractorはEncoder-Decoder
w/ attn, copy mechanismで要 約文(gt)に変換。 Maximum Likelihood • Extractor: 入力D内の文中でgtに最も近い(Rouge)文を教師として分類問題として 学習。 • Abstractor: 普通にcross-entropy lossを最小化するように学習。 Reinforce • Rougeを直接最大化するように、報酬として Extractorを最適化。 4
技術や手法のキモはどこ? 1. CNN, RNNで階層的にDocumentをencode (Extractor)。 2. 得られた特徴量から重要な文を選択。 3. 2. を受け取ったAbstractorはEncoder-Decoder
w/ attn, copy mechanismで要 約文(gt)に変換。 Maximum Likelihood • Extractor: 入力D内の文中でgtに最も近い(Rouge)文を教師として分類問題として 学習。 • Abstractor: 普通にcross-entropy lossを最小化するように学習。 Reinforce • Rougeを直接最大化するように、報酬として Extractorを最適化。 5
技術や手法のキモはどこ? 1. CNN, RNNで階層的にDocumentをencode (Extractor)。 2. 得られた特徴量から重要な文を選択。 3. 2. を受け取ったAbstractorはEncoder-Decoder
w/ attn, copy mechanismで要 約文(gt)に変換。 Maximum Likelihood • Extractor: 入力D内の文中でgtに最も近い(Rouge)文を教師として分類問題として 学習。 • Abstractor: 普通にcross-entropy lossを最小化するように学習。 Reinforce • Rougeを直接最大化するように、報酬として Extractorを最適化。 6
SOTA CNN/Daily Mail for training DUC-2002 for testing 7
SOTA CNN/Daily Mail for training DUC-2002 for testing 8