Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Ruby 2.4 のハッシュテーブル高速化を理解する
Search
Nao Minami
April 20, 2017
Programming
3
6.9k
Ruby 2.4 のハッシュテーブル高速化を理解する
第2回 meguro.rb LT で Ruby 2.4 のハッシュテーブル実装について話しました
https://megurorb.connpass.com/event/55107/
Nao Minami
April 20, 2017
Tweet
Share
More Decks by Nao Minami
See All by Nao Minami
Real World Migration from HTTP to gRPC #CNDT2020
south37
3
6k
Real World Migration from HTTP to gRPC in Ruby #grpcconf
south37
2
4.6k
Getting Things Done をベースにした仕事の進め方 / How to Work with Getting Things Done
south37
8
8.3k
Web API に秩序を与える Protocol Buffers / Protocol Buffers for Web API #builderscon
south37
18
17k
puma v4 では SIGTERM での worker process ゾンビ化に気をつけよう / Be aware of zombie processes in puma v4
south37
1
4.1k
理想的なマイクロサービスアーキテクチャを目指す継続的改善 / Re-architecturing of Microservices #CNDT2019
south37
10
15k
gcpc: Google Cloud Pub/Sub Client for Ruby #tqrk13
south37
1
860
実行計画から学ぶ PostgreSQL の内部動作とクエリ最適化 / Learn PostgreSQL from Explain
south37
8
42k
学びを得るための新卒 ISUCON / New Grad ISUCON for Learning
south37
4
44k
Other Decks in Programming
See All in Programming
生成AI時代を勝ち抜くエンジニア組織マネジメント
coconala_engineer
0
38k
.NET Conf 2025 の興味のあるセッ ションを復習した / dotnet conf 2025 quick recap for backend engineer
tomohisa
0
110
HTTPプロトコル正しく理解していますか? 〜かわいい猫と共に学ぼう。ฅ^•ω•^ฅ ニャ〜
hekuchan
2
600
Graviton と Nitro と私
maroon1st
0
160
AIによるイベントストーミング図からのコード生成 / AI-powered code generation from Event Storming diagrams
nrslib
1
1k
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
650
2年のAppleウォレットパス開発の振り返り
muno92
PRO
0
180
Pythonではじめるオープンデータ分析〜書籍の紹介と書籍で紹介しきれなかった事例の紹介〜
welliving
3
760
AIエージェントの設計で注意するべきポイント6選
har1101
6
3k
perlをWebAssembly上で動かすと何が嬉しいの??? / Where does Perl-on-Wasm actually make sense?
mackee
0
290
CSC307 Lecture 03
javiergs
PRO
1
470
Deno Tunnel を使ってみた話
kamekyame
0
310
Featured
See All Featured
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.9k
Designing Powerful Visuals for Engaging Learning
tmiket
0
200
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
110
Google's AI Overviews - The New Search
badams
0
890
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
Faster Mobile Websites
deanohume
310
31k
Site-Speed That Sticks
csswizardry
13
1k
Bioeconomy Workshop: Dr. Julius Ecuru, Opportunities for a Bioeconomy in West Africa
akademiya2063
PRO
0
37
エンジニアに許された特別な時間の終わり
watany
106
220k
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
170
Transcript
3VCZͷϋογϡςʔϒϧ ߴԽΛཧղ͢Δ /BP.JOBNJ !TPVUI
ࣗݾհ
/BP.JOBNJ!TPVUI !NJOBNJP 4PGUXBSFFOHJOFFS !8BOUFEMZ *OD
w 3VCZͱύϑΥʔϚϯε w 3VCZͰͷϋογϡςʔϒϧߴԽͱͦͷԸܙ w ߴԽͲ͏࣮ݱ͞Εͨͷ͔ʁ w ·ͱΊ ࠓ͢༰
w 3VCZͱύϑΥʔϚϯε w 3VCZͰͷϋογϡςʔϒϧߴԽͱͦͷԸܙ w ߴԽͲ͏࣮ݱ͞Εͨͷ͔ʁ w ·ͱΊ ࠓ͢༰
3VCZY
w ·Ͱʹ3VCZഒ͘ͳΔCZ!NBU[ 3VCZͱύϑΥʔϚϯε w .VMUJ5ISFBE +*5 FUD w 3VCZY w
3VCZͰͷϋογϡςʔϒϧߴԽ /&8
w 3VCZͱύϑΥʔϚϯε w 3VCZͰͷϋογϡςʔϒϧߴԽͱͦͷԸܙ w ߴԽͲ͏࣮ݱ͞Εͨͷ͔ʁ w ·ͱΊ ࠓ͢༰
ϋογϡςʔϒϧߴԽͱͦͷԸܙ
ϋογϡςʔϒϧߴԽͱͦͷԸܙ
ϋογϡςʔϒϧߴԽͱͦͷԸܙ w 36#:#&/$) w ߴԽ w ϝϞϦ༻ྔݮ 1000000.times.map{|i| a={}; 8.times{|j|
a[j]=j}; a} IUUQTSVCZCFODIPSHSVCZSVCZSFMFBTFT SFTVMU@UZQFIBTI@TNBMM
ϋογϡςʔϒϧߴԽͱͦͷԸܙ w QJDP@IUUQ@QBSTFS w ߴԽ IUUQLB[FCVSPIBUFOBCMPHDPNFOUSZ ʜ3VCZ ੨ʜ3VCZQSF
ܶతʹ͘ͳͬͯΔ
w 3VCZͱύϑΥʔϚϯε w 3VCZͰͷϋογϡςʔϒϧߴԽͱͦͷԸܙ w ߴԽͲ͏࣮ݱ͞Εͨͷ͔ʁ w ·ͱΊ ࠓ͢༰
ߴԽͲ͏࣮ݱ͞Εͨͷ͔ʁ w ϋογϡςʔϒϧͷিಥ࣌ͷڍಈΛมߋ $IBJOJOH 0QFO"ESFTTJOH w ϙΠϯτʮσʔλͷہॴੑͷ্ʯ
σʔλͷہॴੑͳͥॏཁ͔ w 1SPDFTTPSʹଟஈΩϟογϡ͕ଘࡏ w ΩϟογϡʹIJU͢ΔͱύϑΥʔϚϯε্ $16 L# .BJO.FNPSZ -$BDIF -$BDIF
-$BDIF .# (# L# # dOT IUUQTUBDLPWFSqPXDPNRVFTUJPOTBQQSPYJNBUFDPTUUPBDDFTTWBSJPVTDBDIFTBOENBJONFNPSZ dOT
σʔλͷہॴੑͳͥॏཁ͔ w 1SPDFTTPSʹଟஈΩϟογϡ͕ଘࡏ w σʔλͷہॴੑ͕ॏཁ $16 L# .BJO.FNPSZ -$BDIF -$BDIF
-$BDIF .# (# L# # dOT IUUQTUBDLPWFSqPXDPNRVFTUJPOTBQQSPYJNBUFDPTUUPBDDFTTWBSJPVTDBDIFTBOENBJONFNPSZ dOT
0QFO"ESFTTJOHͰσʔλͷہॴੑ্͕͕Δͷͳͥʁ w $IBJOJOH 0QFO"ESFTTJOHͭͷΞϧΰϦζϜΛൺֱ w ૬ҧϋογϡςʔϒϧͷিಥ࣌ͷڍಈ w $IBJOJOH࿈݁ϦετΛḷͬͯ୳ࡧ w 0QFO"ESFTTJOH"SSBZ্ͰJOEFYΛม͑ͯ୳ࡧ
w ڞ௨ w ϋογϡςʔϒϧLFZͷIBTIΛJOEFYʹར༻
$IBJOJOHͷΈ w UBCMF࿈݁ϦετͷϙΠϯλΛอ࣋ w ಉ͡IBTIΛ࣋ͭ߹ɺ࿈݁ϦετΛḷΔ IUUQXXXBMHPMJTUOFU%BUB@TUSVDUVSFT)BTI@UBCMF$IBJOJOH FOUSZ UBCMF LFZ
$IBJOJOHͷ w ࿈݁ϦετͷFOUSZɺNFNPSZ্ͰΕͯஔ w σʔλͷہॴੑ͕͍ FOUSZ UBCMF LFZ
3VCZҎલͷ$IBJOJOH w ํϦετʹͳ͓ͬͯΓɺσʔλͷہॴੑ͕͍ ͚ͩͰͳ͘QSFWϙΠϯλͳͲͷ͚ͩFOUSZͷσʔ λ͕Ͱ͔͍ͷ IUUQTEFWFMPQFSTSFEIBUDPNCMPHUPXBSETGBTUFSSVCZIBTIUBCMFT UBCMF FOUSZ FOUSZ FOUSZ
3VCZҎલͷ$IBJOJOH w ํϦετʹͳ͓ͬͯΓɺσʔλͷہॴੑ͕͍ ͚ͩͰͳ͘QSFWϙΠϯλͳͲͷ͚ͩFOUSZͷσʔ λ͕Ͱ͔͍ͷ IUUQTEFWFMPQFSTSFEIBUDPNCMPHUPXBSETGBTUFSSVCZIBTIUBCMFT UBCMF FOUSZ FOUSZ FOUSZ
͍
0QFO"ESFTTJOHͷΈ w UBCMFFOUSZͷQPJOUFSΛอ࣋ w ಉ͡IBTIΛ࣋ͭ߹ɺJOEFYΛͣΒ͢ FOUSZ UBCMF LFZ IUUQXXXBMHPMJTUOFU%BUB@TUSVDUVSFT)BTI@UBCMF0QFO@BEESFTTJOH
3VCZͷ0QFO"ESFTTJOH UBCMF FOUSJFT TUBSU CPVOE w UBCMF FOUSJFT͕྆ํ"SSBZʹͳ͓ͬͯΓσʔλͷہॴ ੑ͕ߴ͘ɺͭͭͷFOUSZͷσʔλαΠζখ͍͞ IUUQTEFWFMPQFSTSFEIBUDPNCMPHUPXBSETGBTUFSSVCZIBTIUBCMFT
3VCZͷ0QFO"ESFTTJOH UBCMF FOUSJFT TUBSU CPVOE w UBCMF FOUSJFT͕྆ํ"SSBZʹͳ͓ͬͯΓσʔλͷہॴ ੑ͕ߴ͘ɺͭͭͷFOUSZͷσʔλαΠζখ͍͞ ߴԽ
3VCZͰߋʹࡉ͔͘࠷దԽ w ͕݅গͳ͍࣌ͷ࠷దԽʢলϝϞϦɺߴԽʣ w ͕݅গͳ͍࣌BSSBZͭͰMJOFBSTFBSDI w ͕݅গͳ͍࣌CJU CJUͳͲͰJOEFYΛදݱ w 'VMMDZDMFMJOFBSDPOHSVFOUJBMHFOFSBUPSΛ
TFDPOEBSZIBTIͱͯ͠ར༻ w ߴ͔ͭIBTIͱͯ͠ͷੑೳྑ͍
w 3VCZͱύϑΥʔϚϯε w 3VCZͰͷϋογϡςʔϒϧߴԽͱͦͷԸܙ w ߴԽͲ͏࣮ݱ͞Εͨͷ͔ʁ w ·ͱΊ ࠓ͢༰
·ͱΊ w 3VCZϋογϡςʔϒϧ͕ܶతʹߴԽɻ࣮ࡍ ʹΞϓϦέʔγϣϯߴԽɻ w 3VCZʹͯ͠շదͳ3VCZϥΠϑΛૹΖ͏ʂ
ࢀߟϦϯΫ w 3VCZϦϦʔε w IUUQTXXXSVCZMBOHPSHKBOFXT SVCZSFMFBTFE w 'FBUVSF)BTIUBCMFTXJUIPQFOBESFTTJOH w IUUQTCVHTSVCZMBOHPSHJTTVFT
w 5PXBSET'BTUFS3VCZ)BTI5BCMFT w IUUQTEFWFMPQFSTSFEIBUDPNCMPHUPXBSET GBTUFSSVCZIBTIUBCMFT