Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ndb
Search
spicyj
May 28, 2014
Technology
0
130
ndb
spicyj
May 28, 2014
Tweet
Share
More Decks by spicyj
See All by spicyj
React: What Lies Ahead
spicyj
6
380
Creating interactive learning interfaces at Khan Academy
spicyj
0
110
Understanding state in React
spicyj
1
110
css
spicyj
2
870
Other Decks in Technology
See All in Technology
What happened to RubyGems and what can we learn?
mikemcquaid
0
250
Agile Leadership Summit Keynote 2026
m_seki
1
430
顧客との商談議事録をみんなで読んで顧客解像度を上げよう
shibayu36
0
170
GitHub Issue Templates + Coding Agentで簡単みんなでIaC/Easy IaC for Everyone with GitHub Issue Templates + Coding Agent
aeonpeople
1
180
toCプロダクトにおけるAI機能開発のしくじりと学び / ai-product-failures-and-learnings
rince
6
5.5k
顧客の言葉を、そのまま信じない勇気
yamatai1212
1
340
SREが向き合う大規模リアーキテクチャ 〜信頼性とアジリティの両立〜
zepprix
0
400
月間数億レコードのアクセスログ基盤を無停止・低コストでAWS移行せよ!アプリケーションエンジニアのSREチャレンジ💪
miyamu
0
800
Claude_CodeでSEOを最適化する_AI_Ops_Community_Vol.2__マーケティングx_AIはここまで進化した.pdf
riku_423
2
450
Bill One急成長の舞台裏 開発組織が直面した失敗と教訓
sansantech
PRO
1
300
学生・新卒・ジュニアから目指すSRE
hiroyaonoe
2
550
オープンウェイトのLLMリランカーを契約書で評価する / searchtechjp
sansan_randd
3
650
Featured
See All Featured
Automating Front-end Workflow
addyosmani
1371
200k
Introduction to Domain-Driven Design and Collaborative software design
baasie
1
580
Tips & Tricks on How to Get Your First Job In Tech
honzajavorek
0
430
Side Projects
sachag
455
43k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
71k
The World Runs on Bad Software
bkeepers
PRO
72
12k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
287
14k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.3k
Speed Design
sergeychernyshev
33
1.5k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
38
2.7k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
Transcript
ndb “NDB is a better datastore API for the Google
App Engine Python runtime.”
Part 1 of 2
Why ndb? 1. Less stupid by default 2. More flexible
queries 3. Tasklets with autobatching
Less stupid by default With db: class UserVideo(db.Model): user_id =
db.StringProperty() video = db.ReferenceProperty(Video) user_video = UserVideo.get_for_video_and_user_data( video, user_data) return jsonify(user_video) # slow
Less stupid by default With ndb: class UserVideo(ndb.Model): user_id =
ndb.StringProperty() video = ndb.KeyProperty(kind=Video) user_video = UserVideo.get_for_video_and_user_data( video, user_data) return jsonify(user_video) # not slow!
More flexible queries ndb lets you build filters using ndb.AND
and ndb.OR: questions = Feedback.query() .filter(Feedback.type == 'question') .filter(Feedback.target == video_key) .filter(ndb.OR( Feedback.is_visible_to_public == True, Feedback.author_user_id == current_id)) .fetch(1000) Magic happens.
Performance The datastore is slow. How can we speed things
up? 4 Batch operations together 4 Do things in parallel 4 Avoid the datastore
Tasklets and autobatching def get_user_exercise_cache(user_data): uec = UEC.get_for_user_data(user_data) if not
uec: user_exercises = UE.get_all(user_data) uec = UEC.build(user_exercises) return uec def get_all_uecs(user_datas): return map(get_user_exercise_cache, user_datas)
Tasklets and autobatching @ndb.tasklet def get_user_exercise_cache_async(user_data): uec = yield UEC.get_for_user_data_async(user_data)
if not uec: user_exercises = yield UE.get_all(user_data) uec = UEC.build(user_exercises) raise ndb.Return(uec) @ndb.synctasklet def get_all_uecs(user_datas): uecs = yield map(get_user_exercise_cache_async, user_datas) raise ndb.Return(uecs)
Moral ndb is awesome. Use it.
Part 2 of 2
The sad truth ndb isn't perfect.
Mysterious errors You heard from Marcia about this gem back
in March: TypeError: '_BaseValue' object is not subscriptable
Q: What's worse than code that doesn't work at all?
A: Code that mostly works but breaks in subtle ways.
Secret slowness #1 Multi-queries, with IN and OR: answers =
Feedback.query() .filter(Feedback.type == 'answer') .filter(Feedback.in_reply_to.IN(question_keys)) .fetch(1000) Doesn't run in parallel!
Secret slowness #1 A not-horribly-slow multi-query: answers = Feedback.query() .filter(Feedback.type
== 'answer') .filter(Feedback.in_reply_to.IN(question_keys)) .order(Feedback.__key__) .fetch(1000)
Secret slowness #2 Query iterators: query = Feedback.query().filter( Feedback.topic_ids ==
'algebra') questions = [] for q in query.iter(batch_size=20): if q.is_visible_to(user_data): questions.append(q) if len(questions) >= 10: break
Secret slowness #2 Solution? Sometimes you have to do it
by hand.
Moral ndb isn't perfect. Pay attention. Profile your code.
The End