Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ndb
Search
spicyj
May 28, 2014
Technology
0
130
ndb
spicyj
May 28, 2014
Tweet
Share
More Decks by spicyj
See All by spicyj
React: What Lies Ahead
spicyj
6
360
Creating interactive learning interfaces at Khan Academy
spicyj
0
110
Understanding state in React
spicyj
1
100
css
spicyj
2
840
Other Decks in Technology
See All in Technology
製造業の課題解決に向けた機械学習の活用と、製造業特化LLM開発への挑戦
knt44kw
0
160
【新卒研修資料】数理最適化 / Mathematical Optimization
brainpadpr
25
11k
Amazon Q Developerを活用したアーキテクチャのリファクタリング
k1nakayama
2
190
dipにおけるSRE変革の軌跡
dip_tech
PRO
1
230
Oracle Cloud Infrastructure:2025年7月度サービス・アップデート
oracle4engineer
PRO
1
120
✨敗北解法コレクション✨〜Expertだった頃に足りなかった知識と技術〜
nanachi
1
480
AI によるドキュメント処理を加速するためのOCR 結果の永続化と再利用戦略
tomoaki25
0
400
ホリスティックテスティングの右側も大切にする 〜2つの[はか]る〜 / Holistic Testing: Right Side Matters
nihonbuson
PRO
0
580
Google Cloud で学ぶデータエンジニアリング入門 2025年版 #GoogleCloudNext / 20250805
kazaneya
PRO
12
2.8k
ロールが細分化された組織でSREと協働するインフラエンジニアは何をするか? / SRE Lounge #18
kossykinto
0
180
Rubyの国のPerlMonger
anatofuz
3
730
Kiroでインフラ要件定義~テスト を実施してみた
nagisa53
3
310
Featured
See All Featured
Optimising Largest Contentful Paint
csswizardry
37
3.4k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
139
34k
A Tale of Four Properties
chriscoyier
160
23k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
How to Think Like a Performance Engineer
csswizardry
25
1.8k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
21
1.4k
A designer walks into a library…
pauljervisheath
207
24k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
870
How to train your dragon (web standard)
notwaldorf
96
6.1k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.6k
Reflections from 52 weeks, 52 projects
jeffersonlam
351
21k
Transcript
ndb “NDB is a better datastore API for the Google
App Engine Python runtime.”
Part 1 of 2
Why ndb? 1. Less stupid by default 2. More flexible
queries 3. Tasklets with autobatching
Less stupid by default With db: class UserVideo(db.Model): user_id =
db.StringProperty() video = db.ReferenceProperty(Video) user_video = UserVideo.get_for_video_and_user_data( video, user_data) return jsonify(user_video) # slow
Less stupid by default With ndb: class UserVideo(ndb.Model): user_id =
ndb.StringProperty() video = ndb.KeyProperty(kind=Video) user_video = UserVideo.get_for_video_and_user_data( video, user_data) return jsonify(user_video) # not slow!
More flexible queries ndb lets you build filters using ndb.AND
and ndb.OR: questions = Feedback.query() .filter(Feedback.type == 'question') .filter(Feedback.target == video_key) .filter(ndb.OR( Feedback.is_visible_to_public == True, Feedback.author_user_id == current_id)) .fetch(1000) Magic happens.
Performance The datastore is slow. How can we speed things
up? 4 Batch operations together 4 Do things in parallel 4 Avoid the datastore
Tasklets and autobatching def get_user_exercise_cache(user_data): uec = UEC.get_for_user_data(user_data) if not
uec: user_exercises = UE.get_all(user_data) uec = UEC.build(user_exercises) return uec def get_all_uecs(user_datas): return map(get_user_exercise_cache, user_datas)
Tasklets and autobatching @ndb.tasklet def get_user_exercise_cache_async(user_data): uec = yield UEC.get_for_user_data_async(user_data)
if not uec: user_exercises = yield UE.get_all(user_data) uec = UEC.build(user_exercises) raise ndb.Return(uec) @ndb.synctasklet def get_all_uecs(user_datas): uecs = yield map(get_user_exercise_cache_async, user_datas) raise ndb.Return(uecs)
Moral ndb is awesome. Use it.
Part 2 of 2
The sad truth ndb isn't perfect.
Mysterious errors You heard from Marcia about this gem back
in March: TypeError: '_BaseValue' object is not subscriptable
Q: What's worse than code that doesn't work at all?
A: Code that mostly works but breaks in subtle ways.
Secret slowness #1 Multi-queries, with IN and OR: answers =
Feedback.query() .filter(Feedback.type == 'answer') .filter(Feedback.in_reply_to.IN(question_keys)) .fetch(1000) Doesn't run in parallel!
Secret slowness #1 A not-horribly-slow multi-query: answers = Feedback.query() .filter(Feedback.type
== 'answer') .filter(Feedback.in_reply_to.IN(question_keys)) .order(Feedback.__key__) .fetch(1000)
Secret slowness #2 Query iterators: query = Feedback.query().filter( Feedback.topic_ids ==
'algebra') questions = [] for q in query.iter(batch_size=20): if q.is_visible_to(user_data): questions.append(q) if len(questions) >= 10: break
Secret slowness #2 Solution? Sometimes you have to do it
by hand.
Moral ndb isn't perfect. Pay attention. Profile your code.
The End