Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ndb
Search
spicyj
May 28, 2014
Technology
0
120
ndb
spicyj
May 28, 2014
Tweet
Share
More Decks by spicyj
See All by spicyj
React: What Lies Ahead
spicyj
6
340
Creating interactive learning interfaces at Khan Academy
spicyj
0
110
Understanding state in React
spicyj
1
96
css
spicyj
2
790
Other Decks in Technology
See All in Technology
【Oracle Cloud ウェビナー】2025年のセキュリティ脅威を読み解く:リスクに備えるためのレジリエンスとデータ保護
oracle4engineer
PRO
1
100
ドメイン駆動設計の実践により事業の成長スピードと保守性を両立するショッピングクーポン
lycorptech_jp
PRO
13
2.3k
re:Invent 2024のふりかえり
beli68
0
110
2025年に挑戦したいこと
molmolken
0
160
My small contributions - Fujiwara Tech Conference 2025
ijin
0
1.4k
Formal Development of Operating Systems in Rust
riru
1
420
RubyでKubernetesプログラミング
sat
PRO
4
160
コロプラのオンボーディングを採用から語りたい
colopl
5
1.3k
AWSサービスアップデート 2024/12 Part3
nrinetcom
PRO
0
140
KMP with Crashlytics
sansantech
PRO
0
240
Docker Desktop で Docker を始めよう
zembutsu
PRO
0
180
Oracle Exadata Database Service(Dedicated Infrastructure):サービス概要のご紹介
oracle4engineer
PRO
0
12k
Featured
See All Featured
Music & Morning Musume
bryan
46
6.3k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
KATA
mclloyd
29
14k
[RailsConf 2023] Rails as a piece of cake
palkan
53
5.1k
Fashionably flexible responsive web design (full day workshop)
malarkey
406
66k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
6
500
VelocityConf: Rendering Performance Case Studies
addyosmani
327
24k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.2k
Making the Leap to Tech Lead
cromwellryan
133
9k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
3
180
Thoughts on Productivity
jonyablonski
68
4.4k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Transcript
ndb “NDB is a better datastore API for the Google
App Engine Python runtime.”
Part 1 of 2
Why ndb? 1. Less stupid by default 2. More flexible
queries 3. Tasklets with autobatching
Less stupid by default With db: class UserVideo(db.Model): user_id =
db.StringProperty() video = db.ReferenceProperty(Video) user_video = UserVideo.get_for_video_and_user_data( video, user_data) return jsonify(user_video) # slow
Less stupid by default With ndb: class UserVideo(ndb.Model): user_id =
ndb.StringProperty() video = ndb.KeyProperty(kind=Video) user_video = UserVideo.get_for_video_and_user_data( video, user_data) return jsonify(user_video) # not slow!
More flexible queries ndb lets you build filters using ndb.AND
and ndb.OR: questions = Feedback.query() .filter(Feedback.type == 'question') .filter(Feedback.target == video_key) .filter(ndb.OR( Feedback.is_visible_to_public == True, Feedback.author_user_id == current_id)) .fetch(1000) Magic happens.
Performance The datastore is slow. How can we speed things
up? 4 Batch operations together 4 Do things in parallel 4 Avoid the datastore
Tasklets and autobatching def get_user_exercise_cache(user_data): uec = UEC.get_for_user_data(user_data) if not
uec: user_exercises = UE.get_all(user_data) uec = UEC.build(user_exercises) return uec def get_all_uecs(user_datas): return map(get_user_exercise_cache, user_datas)
Tasklets and autobatching @ndb.tasklet def get_user_exercise_cache_async(user_data): uec = yield UEC.get_for_user_data_async(user_data)
if not uec: user_exercises = yield UE.get_all(user_data) uec = UEC.build(user_exercises) raise ndb.Return(uec) @ndb.synctasklet def get_all_uecs(user_datas): uecs = yield map(get_user_exercise_cache_async, user_datas) raise ndb.Return(uecs)
Moral ndb is awesome. Use it.
Part 2 of 2
The sad truth ndb isn't perfect.
Mysterious errors You heard from Marcia about this gem back
in March: TypeError: '_BaseValue' object is not subscriptable
Q: What's worse than code that doesn't work at all?
A: Code that mostly works but breaks in subtle ways.
Secret slowness #1 Multi-queries, with IN and OR: answers =
Feedback.query() .filter(Feedback.type == 'answer') .filter(Feedback.in_reply_to.IN(question_keys)) .fetch(1000) Doesn't run in parallel!
Secret slowness #1 A not-horribly-slow multi-query: answers = Feedback.query() .filter(Feedback.type
== 'answer') .filter(Feedback.in_reply_to.IN(question_keys)) .order(Feedback.__key__) .fetch(1000)
Secret slowness #2 Query iterators: query = Feedback.query().filter( Feedback.topic_ids ==
'algebra') questions = [] for q in query.iter(batch_size=20): if q.is_visible_to(user_data): questions.append(q) if len(questions) >= 10: break
Secret slowness #2 Solution? Sometimes you have to do it
by hand.
Moral ndb isn't perfect. Pay attention. Profile your code.
The End