Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ndb
Search
spicyj
May 28, 2014
Technology
0
120
ndb
spicyj
May 28, 2014
Tweet
Share
More Decks by spicyj
See All by spicyj
React: What Lies Ahead
spicyj
6
340
Creating interactive learning interfaces at Khan Academy
spicyj
0
110
Understanding state in React
spicyj
1
97
css
spicyj
2
800
Other Decks in Technology
See All in Technology
株式会社EventHub・エンジニア採用資料
eventhub
0
4.3k
Culture Deck
optfit
0
420
Classmethod AI Talks(CATs) #16 司会進行スライド(2025.02.12) / classmethod-ai-talks-aka-cats_moderator-slides_vol16_2025-02-12
shinyaa31
0
110
分解して理解する Aspire
nenonaninu
1
280
SA Night #2 FinatextのSA思想/SA Night #2 Finatext session
satoshiimai
1
140
飲食店予約台帳を支えるインタラクティブ UI 設計と実装
siropaca
7
1.8k
「海外登壇」という 選択肢を与えるために 〜Gophers EX
logica0419
0
710
(機械学習システムでも) SLO から始める信頼性構築 - ゆる SRE#9 2025/02/21
daigo0927
0
150
転生CISOサバイバル・ガイド / CISO Career Transition Survival Guide
kanny
3
1k
TAMとre:Capセキュリティ編 〜拡張脅威検出デモを添えて〜
fujiihda
2
250
抽象化をするということ - 具体と抽象の往復を身につける / Abstraction and concretization
soudai
19
7.9k
Platform Engineeringは自由のめまい
nwiizo
4
2.1k
Featured
See All Featured
[RailsConf 2023] Rails as a piece of cake
palkan
53
5.2k
A better future with KSS
kneath
238
17k
Faster Mobile Websites
deanohume
306
31k
Docker and Python
trallard
44
3.3k
Site-Speed That Sticks
csswizardry
4
380
Fashionably flexible responsive web design (full day workshop)
malarkey
406
66k
KATA
mclloyd
29
14k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
129
19k
Embracing the Ebb and Flow
colly
84
4.6k
RailsConf 2023
tenderlove
29
1k
The Invisible Side of Design
smashingmag
299
50k
Optimising Largest Contentful Paint
csswizardry
34
3.1k
Transcript
ndb “NDB is a better datastore API for the Google
App Engine Python runtime.”
Part 1 of 2
Why ndb? 1. Less stupid by default 2. More flexible
queries 3. Tasklets with autobatching
Less stupid by default With db: class UserVideo(db.Model): user_id =
db.StringProperty() video = db.ReferenceProperty(Video) user_video = UserVideo.get_for_video_and_user_data( video, user_data) return jsonify(user_video) # slow
Less stupid by default With ndb: class UserVideo(ndb.Model): user_id =
ndb.StringProperty() video = ndb.KeyProperty(kind=Video) user_video = UserVideo.get_for_video_and_user_data( video, user_data) return jsonify(user_video) # not slow!
More flexible queries ndb lets you build filters using ndb.AND
and ndb.OR: questions = Feedback.query() .filter(Feedback.type == 'question') .filter(Feedback.target == video_key) .filter(ndb.OR( Feedback.is_visible_to_public == True, Feedback.author_user_id == current_id)) .fetch(1000) Magic happens.
Performance The datastore is slow. How can we speed things
up? 4 Batch operations together 4 Do things in parallel 4 Avoid the datastore
Tasklets and autobatching def get_user_exercise_cache(user_data): uec = UEC.get_for_user_data(user_data) if not
uec: user_exercises = UE.get_all(user_data) uec = UEC.build(user_exercises) return uec def get_all_uecs(user_datas): return map(get_user_exercise_cache, user_datas)
Tasklets and autobatching @ndb.tasklet def get_user_exercise_cache_async(user_data): uec = yield UEC.get_for_user_data_async(user_data)
if not uec: user_exercises = yield UE.get_all(user_data) uec = UEC.build(user_exercises) raise ndb.Return(uec) @ndb.synctasklet def get_all_uecs(user_datas): uecs = yield map(get_user_exercise_cache_async, user_datas) raise ndb.Return(uecs)
Moral ndb is awesome. Use it.
Part 2 of 2
The sad truth ndb isn't perfect.
Mysterious errors You heard from Marcia about this gem back
in March: TypeError: '_BaseValue' object is not subscriptable
Q: What's worse than code that doesn't work at all?
A: Code that mostly works but breaks in subtle ways.
Secret slowness #1 Multi-queries, with IN and OR: answers =
Feedback.query() .filter(Feedback.type == 'answer') .filter(Feedback.in_reply_to.IN(question_keys)) .fetch(1000) Doesn't run in parallel!
Secret slowness #1 A not-horribly-slow multi-query: answers = Feedback.query() .filter(Feedback.type
== 'answer') .filter(Feedback.in_reply_to.IN(question_keys)) .order(Feedback.__key__) .fetch(1000)
Secret slowness #2 Query iterators: query = Feedback.query().filter( Feedback.topic_ids ==
'algebra') questions = [] for q in query.iter(batch_size=20): if q.is_visible_to(user_data): questions.append(q) if len(questions) >= 10: break
Secret slowness #2 Solution? Sometimes you have to do it
by hand.
Moral ndb isn't perfect. Pay attention. Profile your code.
The End