Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ndb
Search
spicyj
May 28, 2014
Technology
0
120
ndb
spicyj
May 28, 2014
Tweet
Share
More Decks by spicyj
See All by spicyj
React: What Lies Ahead
spicyj
6
360
Creating interactive learning interfaces at Khan Academy
spicyj
0
110
Understanding state in React
spicyj
1
99
css
spicyj
2
830
Other Decks in Technology
See All in Technology
BigQuery Remote FunctionでLooker Studioをインタラクティブ化
cuebic9bic
2
210
DroidKnights 2025 - Jetpack XR 살펴보기: XR 개발은 어떻게 이루어지는가?
heesung6701
1
160
本部長の代わりに提案書レビュー! KDDI営業が毎日使うAIエージェント「A-BOSS」開発秘話
minorun365
PRO
14
2.2k
AWS アーキテクチャ作図入門/aws-architecture-diagram-101
ma2shita
28
9.3k
Cloud Native Scalability for Internal Developer Platforms
hhiroshell
2
500
強化されたAmazon Location Serviceによる新機能と開発者体験
dayjournal
1
120
Agentic Workflowという選択肢を考える
tkikuchi1002
1
280
20250623 Findy Lunch LT Brown
3150
0
710
VCpp Link and Library - C++ breaktime 2025 Summer
harukasao
0
220
ユーザーのプロフィールデータを活用した推薦精度向上の取り組み
yudai00
0
460
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
53
31k
IIWレポートからみるID業界で話題のMCP
fujie
0
630
Featured
See All Featured
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.3k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
A Modern Web Designer's Workflow
chriscoyier
693
190k
Adopting Sorbet at Scale
ufuk
77
9.4k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
4
190
Unsuck your backbone
ammeep
671
58k
Speed Design
sergeychernyshev
31
1k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
137
34k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
357
30k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.3k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Writing Fast Ruby
sferik
628
61k
Transcript
ndb “NDB is a better datastore API for the Google
App Engine Python runtime.”
Part 1 of 2
Why ndb? 1. Less stupid by default 2. More flexible
queries 3. Tasklets with autobatching
Less stupid by default With db: class UserVideo(db.Model): user_id =
db.StringProperty() video = db.ReferenceProperty(Video) user_video = UserVideo.get_for_video_and_user_data( video, user_data) return jsonify(user_video) # slow
Less stupid by default With ndb: class UserVideo(ndb.Model): user_id =
ndb.StringProperty() video = ndb.KeyProperty(kind=Video) user_video = UserVideo.get_for_video_and_user_data( video, user_data) return jsonify(user_video) # not slow!
More flexible queries ndb lets you build filters using ndb.AND
and ndb.OR: questions = Feedback.query() .filter(Feedback.type == 'question') .filter(Feedback.target == video_key) .filter(ndb.OR( Feedback.is_visible_to_public == True, Feedback.author_user_id == current_id)) .fetch(1000) Magic happens.
Performance The datastore is slow. How can we speed things
up? 4 Batch operations together 4 Do things in parallel 4 Avoid the datastore
Tasklets and autobatching def get_user_exercise_cache(user_data): uec = UEC.get_for_user_data(user_data) if not
uec: user_exercises = UE.get_all(user_data) uec = UEC.build(user_exercises) return uec def get_all_uecs(user_datas): return map(get_user_exercise_cache, user_datas)
Tasklets and autobatching @ndb.tasklet def get_user_exercise_cache_async(user_data): uec = yield UEC.get_for_user_data_async(user_data)
if not uec: user_exercises = yield UE.get_all(user_data) uec = UEC.build(user_exercises) raise ndb.Return(uec) @ndb.synctasklet def get_all_uecs(user_datas): uecs = yield map(get_user_exercise_cache_async, user_datas) raise ndb.Return(uecs)
Moral ndb is awesome. Use it.
Part 2 of 2
The sad truth ndb isn't perfect.
Mysterious errors You heard from Marcia about this gem back
in March: TypeError: '_BaseValue' object is not subscriptable
Q: What's worse than code that doesn't work at all?
A: Code that mostly works but breaks in subtle ways.
Secret slowness #1 Multi-queries, with IN and OR: answers =
Feedback.query() .filter(Feedback.type == 'answer') .filter(Feedback.in_reply_to.IN(question_keys)) .fetch(1000) Doesn't run in parallel!
Secret slowness #1 A not-horribly-slow multi-query: answers = Feedback.query() .filter(Feedback.type
== 'answer') .filter(Feedback.in_reply_to.IN(question_keys)) .order(Feedback.__key__) .fetch(1000)
Secret slowness #2 Query iterators: query = Feedback.query().filter( Feedback.topic_ids ==
'algebra') questions = [] for q in query.iter(batch_size=20): if q.is_visible_to(user_data): questions.append(q) if len(questions) >= 10: break
Secret slowness #2 Solution? Sometimes you have to do it
by hand.
Moral ndb isn't perfect. Pay attention. Profile your code.
The End