Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
みんなのPython勉強会#38登壇資料 tf-idfを使ったグロースハック
Search
sugaya takehiro
September 12, 2018
Technology
1
880
みんなのPython勉強会#38登壇資料 tf-idfを使ったグロースハック
sugaya takehiro
September 12, 2018
Tweet
Share
Other Decks in Technology
See All in Technology
Workflows から Agents へ ~ 生成 AI アプリの成長過程とアプローチ~
belongadmin
2
120
CSSの最新トレンド Ver.2025
tonkotsuboy_com
11
4.5k
Ретроспективный взгляд на Vue 3. Даша Сабурова, Vue-разработчик Lamoda Tech
lamodatech
0
1.1k
生成AIをテストプロセスに活用し"よう"としている話 #jasstnano
makky_tyuyan
0
120
やさしい認証認可
minorun365
PRO
29
12k
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
7.2k
バクラクのモノレポにおける AI Coding のための環境整備と {Roo,Claude} Code活用事例 / AI Coding in Bakuraku's Monorepo: Environment Setup & Case Studies with {Roo, Claude} Code
upamune
9
5.7k
Text-to-SQLの評価データセットを作って最新LLMモデルの性能評価をしてみた
gotalab555
3
770
Test Smarter, Not Harder: Achieving Confidence in Complex Distributed Systems
eliasnogueira
1
150
AIコーディング新時代を生き残るための試行錯誤 / AI Coding Survival Guide
tomohisa
9
11k
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
22
8.1k
Vibe Codingの裏で、 考える力をどう取り戻すか
csekine
2
650
Featured
See All Featured
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
137
34k
Being A Developer After 40
akosma
90
590k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
Code Reviewing Like a Champion
maltzj
524
40k
Rebuilding a faster, lazier Slack
samanthasiow
81
9k
Why You Should Never Use an ORM
jnunemaker
PRO
56
9.4k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
657
60k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
35
2.3k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Transcript
͍·͞Β͚ͩͲPythonͰtf-idfͬͯΈͨ UGJEGΛͬͯ ΞϓϦͷάϩʔεΛͯ͠Έͨ
ΤϯδχΞ σʔλΞφϦετ Ϗδωε ຊ͍Β͍ͯ͠Δํ
ࣗݾհ • Takehiro Sugara @sugartaker • ੲϦαʔνձࣾͰ ੳɾࣄۀ։ൃ͍ͯ͠·ͨ͠ • ࠓϔϧεέΞΞϓϦͷ
άϩʔεϋοΫΛ͍ͯ͠·͢
ಥવͰ͕͢ɺࢲ͋ΔࣈΛͱͯάϩʔεͤ͞·ͨ͠ ඪ
1 0 2 ࢲͷମॏͰ͢ దਖ਼ମॏ
ࠓ͢͜ͱ • ࣗݾհ • tf-idfΛͬͯΞϓϦͷάϩʔεΛͯ͠Έͨ
͜Μͳ͜ͱ͋Γ·ͤΜ͔ʁ • Ϛʔέ୲ऀ • ݁ہͲΜͳײ͡ͷࠂόφʔ͕͍͍ͷʁ • ηʔϧε୲ऀ • ݁ہͲΜͳײ͡ͷϝϧϚΨɾϓογϡ௨͕͍͍ͷʁ •
ϥΠλʔ • ݁ہͲΜͳײ͡ͷهࣄ͕͍͍ͷʁ
͜Μͳ͜ͱ͋Γ·ͤΜ͔ʁ ਖ਼Ϧιʔε͕Γͳͯ͘ࡉ͔͍ͱ͜Ζ·ͰΈͯΒΕͳ͍ʂ
'J/$Ͱ͋Γ·ͨ͠
ͦͦ'J/$ͬͯͲΜͳձࣾʁ
ʮ༧ϔϧεέΞºςΫϊϩδʔʯʹಛԽͨ͠ϔϧεςοΫϕϯνϟʔ l"CPVU'J/$z
ɹ FiNC͕ఏڙՄೳͳιϦϡʔγϣϯ 'J/$͕ఏڙ͍ͯ͠ΔαʔϏε FiNCΞϓϦ ʢToC͚ΞϓϦʣ FiNC for Business ʢToB͚αʔϏεʣ FiNC
Fit ʢύʔιφϧδϜʣ FiNC Mall ʢECαΠτʣ
ɹ FiNC͕ఏڙՄೳͳιϦϡʔγϣϯ 'J/$͕ఏڙ͍ͯ͠ΔαʔϏε FiNCΞϓϦ ʢToC͚ΞϓϦʣ FiNC for Business ʢToB͚αʔϏεʣ FiNC
Fit ʢύʔιφϧδϜʣ FiNC Mall ʢECαΠτʣ
ɹ FiNC͕ఏڙՄೳͳιϦϡʔγϣϯ 'J/$ΞϓϦ͕ఏڙ͍ͯ͠ΔαʔϏε ϝσΟΞ ϥΠϑϩά νϟοτϘοτ αϒεΫϦϓγϣϯ
ɹ FiNC͕ఏڙՄೳͳιϦϡʔγϣϯ 'J/$ΞϓϦ͕ఏڙ͍ͯ͠ΔαʔϏε ϝσΟΞ ϥΠϑϩά νϟοτϘοτ αϒεΫϦϓγϣϯ
ɹ FiNC͕ఏڙՄೳͳιϦϡʔγϣϯ 'J/$ΞϓϦ͕ఏڙ͍ͯ͠ΔαʔϏε ϝσΟΞ • 20181݄͔Βελʔτ • ϔϧεέΞؔ࿈ͷهࣄΛܝࡌ͍ͯ͠Δ
՝ ݁ہͲΜͳײ͡ͷهࣄ͕͍͍ͷʁ ϥΠλʔ
՝ • ݸʑͷίϯςϯπͷCTRɾ͓ؾʹೖΓɾࡏ࣌ؒΘ͔Δ • ͰશମతʹͲΜͳίϯςϯπ͕έΔͷ͔ײ֮తʹ͔͠Θ͔Βͳ͍
ղܾࡦ • ͲΜͳ୯ޠ͕ೖͬͨهࣄͩͱέ͍͢ͷ͔Λఆྔతʹग़͢
UGJEGΛͬͯΈͨ
UGJEGͱʁ • tf-idfͱʁ • Term Frequency Inverse Document Frequencyͷུ •
จষͷத͔ΒಛޠΛநग़͜ͱ͕Ͱ͖Δ • tf-idfΛ͏ཧ༝ • ʢݹయతͳख๏͚ͩͲʣ • ܭࢉ͍͢͠ • આ໌͍͢͠ • ͺͬͱग़ͤΔ
UGJEGͷϩδοΫ • tfɿରจষͷର୯ޠͷग़ݱճ ɹɹ/ ରจষͷશͯͷ୯ޠͷग़ݱճ ɹˠͦͷ୯ޠ͕ͦͷจষʹͲΕ͚ͩଟ͘ग़ݱ͍ͯ͠Δ͔ • idfɿlog(૯จষ / ର୯ޠ͕ग़ݱ͢Δจষʣ+
1 ɹɹˠͦͷ୯ޠ͕શମͷจষʹରͯ͠ͲΕ͚ͩϨΞ͔ • tf-idfɿtf * idf
45&1 ϩʔσʔλ ࡞ ܗଶૉղੳ tf-idfΛ ܭࢉ
ϩʔσʔλͷ࡞ จষ༰ จষ1 ࢲPythonͷຊΛಡΉ จষ2 ࢲຊ͕͖ͩ จষ3 ࢲPythonͷຊΛಡΈͳ͕Β PythonͷίʔυΛॻ͘
ܗଶૉղੳ จষ༰ จষ1 ࢲPythonͷຊΛಡΉ จষ2 ࢲຊ͕͖ͩ จষ3 ࢲPythonͷຊΛಡΈͳ͕Β PythonͷίʔυΛॻ͘
ܗଶૉղੳ จষ༰ จষ1 ࢲ Python ຊ จষ2 ࢲ ຊ จষ3
ࢲ Python ຊ Pythonίʔυ
UGJEGͷܭࢉ จষ༰ จষ1 ࢲ Python ຊ จষ2 ࢲ ຊ จষ3
ࢲ Python ຊ Python ίʔυ TF ࢲ 1/5 = 0.2 Python 2/5 = 0.4 ຊ 1/5 = 0.2 ίʔυ 1/5 = 0.2
UGJEGͷܭࢉ จষ༰ จষ1 ࢲ Python ຊ จষ2 ࢲ ຊ จষ3
ࢲ Python ຊ Python ίʔυ TF ࢲ 1/5 = 0.2 Python 2/5 = 0.4 ຊ 1/5 = 0.2 ίʔυ 1/5 = 0.2 ରจষͷର୯ޠͷग़ݱճ ɹɹ/ ରจষͷશͯͷ୯ޠͷग़ݱճ →ͦͷ୯ޠ͕ͦͷจষʹͲΕ͚ͩଟ͘ग़ݱ͍ͯ͠Δ͔
UGJEGͷܭࢉ จষ༰ จষ1 ࢲ Python ຊ จষ2 ࢲ ຊ จষ3
ࢲ Python ຊ Python ίʔυ TF IDF ࢲ 1/5 = 0.2 log2(3/3) + 1 = 1 Python 2/5 = 0.4 log2(3/2) + 1 = 1.58 ຊ 1/5 = 0.2 log2(3/3) + 1= 1 ίʔυ 1/5 = 0.2 log2(3/1) + 1= 2.58
UGJEGͷܭࢉ จষ༰ จষ1 ࢲ Python ຊ จষ2 ࢲ ຊ จষ3
ࢲ Python ຊ Python ίʔυ TF IDF ࢲ 1/5 = 0.2 log2(3/3) + 1 = 1 Python 2/5 = 0.4 log2(3/2) + 1 = 1.58 ຊ 1/5 = 0.2 log2(3/3) + 1= 1 ίʔυ 1/5 = 0.2 log2(3/1) + 1= 2.58 log(૯จষ / ର୯ޠ͕ग़ݱ͢Δจষʣ+ 1 →ͦͷ୯ޠ͕શମͷจষʹରͯ͠ͲΕ͚ͩϨΞ͔
UGJEGͷܭࢉ จষ༰ จষ1 ࢲ Python ຊ จষ2 ࢲ ຊ จষ3
ࢲ Python ຊ Python ίʔυ TF IDF TF-IDF ࢲ 1/5 = 0.2 log2(3/3) + 1 = 1 0.20 Python 2/5 = 0.4 log2(3/2) + 1 = 1.58 0.63 ຊ 1/5 = 0.2 log2(3/3) + 1= 1 0.20 ίʔυ 1/5 = 0.2 log2(3/1) + 1= 2.58 0.52
UGJEGͷܭࢉ จষ༰ จষ1 ࢲ Python ຊ จষ2 ࢲ ຊ จষ3
ࢲ Python ຊ Python ίʔυ TF IDF TF-IDF ࢲ 1/5 = 0.2 log2(3/3) + 1 = 1 0.20 Python 2/5 = 0.4 log2(3/2) + 1 = 1.58 0.63 ຊ 1/5 = 0.2 log2(3/3) + 1= 1 0.20 ίʔυ 1/5 = 0.2 log2(3/1) + 1= 2.58 0.52 TF * IDF
UGJEGͷܭࢉ จষ༰ จষ1 ࢲ Python ຊ จষ2 ࢲ ຊ จষ3
ࢲ Python ຊ Python ίʔυ TF IDF TF-IDF ࢲ 1/5 = 0.2 log2(3/3) + 1 = 1 0.20 Python 2/5 = 0.4 log2(3/2) + 1 = 1.58 0.63 ຊ 1/5 = 0.2 log2(3/3) + 1= 1 0.20 ίʔυ 1/5 = 0.2 log2(3/1) + 1= 2.58 0.52
UGJEGͷܭࢉ จষ༰ จষ1 ࢲ Python ຊ จষ2 ࢲ ຊ จষ3
ࢲ Python ຊ Python ίʔυ TF IDF TF-IDF ࢲ 1/5 = 0.2 log2(3/3) + 1 = 1 0.20 Python 2/5 = 0.4 log2(3/2) + 1 = 1.58 0.63 ຊ 1/5 = 0.2 log2(3/3) + 1= 1 0.20 ίʔυ 1/5 = 0.2 log2(3/1) + 1= 2.58 0.52 ͜ͷจষͰ Pythonͱ͍͏୯ޠ ͕ಛతʂ
UGJEGͷܭࢉ จষ༰ จষ1 ࢲ Python ຊ จষ2 ࢲ ຊ จষ3
ࢲ Python ຊ Python ίʔυ TF IDF TF-IDF ࢲ 1/5 = 0.2 log2(3/3) + 1 = 1 0.20 Python 2/5 = 0.4 log2(3/2) + 1 = 1.58 0.63 ຊ 1/5 = 0.2 log2(3/3) + 1= 1 0.20 ίʔυ 1/5 = 0.2 log2(3/1) + 1= 2.58 0.52 ͜ͷจষͰ Pythonͱ͍͏୯ޠ ͕ಛతʂ
՝ • ݸʑͷίϯςϯπͷCTRɾ͓ؾʹೖΓɾࡏ࣌ؒΘ͔Δ • ͰશମతʹͲΜͳίϯςϯπ͕ड͚Δͷ͔ײ֮తʹ͔͠Θ͔Βͳ͍
͔ͭͯ͜Μͳ͜ͱ͕͋Γ·ͨ͠ هࣄ༰ KPI هࣄ1 μΠΤοτʹӡಈ͕ॏཁ ྑ͍ هࣄ2 μΠΤοτదͳӡಈͱӫཆɺ ಛʹ࣭ͷ੍ݶ͕ޮՌత ྑ͍
هࣄ3 ࣭ΛμΠΤοτதʹ৯ͨ͘ͳͬͨΒʁ ѱ͍ هࣄ4 ӫཆΛؾʹͯ͠μΠΤοτɺ ӫཆ࣭όϥϯεΑ͘ઁऔ͠Α͏ ѱ͍
͔ͭͯ͜Μͳ͜ͱ͕͋Γ·ͨ͠ هࣄ༰ KPI هࣄ1 μΠΤοτʹӡಈ͕ॏཁ ྑ͍ هࣄ2 μΠΤοτదͳӡಈͱӫཆɺ ಛʹ࣭ͷ੍ݶ͕ޮՌత ྑ͍
هࣄ3 ࣭ΛμΠΤοτதʹ৯ͨ͘ͳͬͨΒʁ ѱ͍ هࣄ4 ӫཆΛؾʹͯ͠μΠΤοτɺ ӫཆ࣭όϥϯεΑ͘ઁऔ͠Α͏ ѱ͍
͔ͭͯ͜Μͳ͜ͱ͕͋Γ·ͨ͠ هࣄ༰ KPI هࣄ1 μΠΤοτʹӡಈ͕ॏཁ ྑ͍ هࣄ2 μΠΤοτదͳӡಈͱӫཆɺ ಛʹ࣭ͷ੍ݶ͕ޮՌత ྑ͍
هࣄ3 ࣭ΛμΠΤοτதʹ৯ͨ͘ͳͬͨΒʁ ѱ͍ هࣄ4 ӫཆΛؾʹͯ͠μΠΤοτɺ ӫཆ࣭όϥϯεΑ͘ઁऔ͠Α͏ ѱ͍ μΠΤοτهࣄ͕ ͍͍Μ͡Όͳ͍ʁ
͔ͭͯ͜Μͳ͜ͱ͕͋Γ·ͨ͠ هࣄ༰ KPI هࣄ1 μΠΤοτʹӡಈ͕ॏཁ ྑ͍ هࣄ2 μΠΤοτదͳӡಈͱӫཆɺ ಛʹ࣭ͷ੍ݶ͕ޮՌత ྑ͍
هࣄ3 ࣭ΛμΠΤοτதʹ৯ͨ͘ͳͬͨΒʁ ѱ͍ هࣄ4 ӫཆΛؾʹͯ͠μΠΤοτɺ ӫཆ࣭όϥϯεΑ͘ઁऔ͠Α͏ ѱ͍ ຊ μΠΤοτهࣄ ྑ͍ͷѱ͍ͷ ͋Δ
UGJEGͩͯ͠ΈΔ هࣄ༰ KPI هࣄ1 μΠΤοτʹӡಈ͕ॏཁ ྑ͍ هࣄ2 μΠΤοτదͳӡಈͱӫཆɺ ಛʹ࣭ͷ੍ݶ͕ޮՌత ྑ͍
هࣄ3 ࣭ΛμΠΤοτதʹ৯ͨ͘ͳͬͨΒʁ ѱ͍ هࣄ4 ӫཆΛؾʹͯ͠μΠΤοτɺ ӫཆ࣭όϥϯεΑ͘ઁऔ͠Α͏ ѱ͍
UGJEGͩͯ͠ΈΔ هࣄ༰ KPI هࣄ1 μΠΤοτ ӡಈ ྑ͍ هࣄ2 μΠΤοτ ӡಈ
ӫཆ ࣭ ྑ͍ هࣄ3 ࣭ μΠΤοτ ѱ͍ هࣄ4 ӫཆ μΠΤοτ ӫཆ ࣭ ѱ͍
UGJEGͩͯ͠ΈΔ هࣄ༰ KPI هࣄ1 μΠΤοτ ӡಈ ྑ͍ هࣄ2 μΠΤοτ ӡಈ
ӫཆ ࣭ ྑ͍ هࣄ3 ࣭ μΠΤοτ ѱ͍ هࣄ4 ӫཆ μΠΤοτ ӫཆ ࣭ ѱ͍
UGJEGͩͯ͠ΈΔ هࣄ༰ KPI هࣄ1 هࣄ2 μΠΤοτ ӡಈ μΠΤοτ ӡಈ ӫཆ
࣭ ྑ͍ هࣄ3 هࣄ4 ࣭ μΠΤοτ ӫཆ μΠΤοτ ӫཆ ࣭ ѱ͍
UGJEGͩͯ͠ΈΔ tf-idf μΠΤοτ ӡಈ ӫཆ ࣭ هࣄ1 هࣄ2 ※KPIྑ͍ 0.54
0.75 0.27 0.27 هࣄ3 هࣄ4 ※KPIѱ͍ 0.56 0 0.58 0.58
UGJEGͩͯ͠ΈΔ tf-idf μΠΤοτ ӡಈ ӫཆ ࣭ هࣄ1 هࣄ2 ※KPIྑ͍ 0.54
0.75 0.27 0.27 هࣄ3 هࣄ4 ※KPIѱ͍ 0.56 0 0.58 0.58 ӡಈͷهࣄ͕ Αͦ͞͏ʂ
ࢪࡦ ྑ͛͞ͳ୯ޠ͔ΒੜίϯςϯπΛ࡞͢Δ
݁Ռ DAUҰਓ͋ͨΓͷPV্͕ʂ
·ͱΊ • tf-idf • PythonͰ؆୯ʹͩ͢͜ͱ͕Ͱ͖Δ • จষͷத͔ΒಛޠΛநग़Ͱ͖Δ • ͬ͘͟ΓͱέΔ/έͳ͍ΩʔϫʔυͷΛ͔ͭΊΔ •
ςΩετͷཁྨͷ࠷ॳͷҰาʹ͓͢͢Ί • ࠓճهࣄͷࣄྫ͕ͩɺϝϧϚΨɾϓογϡ௨ͳͲ Ͱ͑Δͣ
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠ʂ