Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
TensorFlowを利用した アイドル顔識別についてあれこれ / 2017-01-28 GC...
Search
すぎゃーん
January 28, 2017
Technology
2
2.2k
TensorFlowを利用した アイドル顔識別についてあれこれ / 2017-01-28 GCPUG Fukuoka 5th
GCPUG Fukuoka 5th 〜Machine Learning 祭〜
https://gcpugfukuoka.connpass.com/event/46049/
で使った資料です
すぎゃーん
January 28, 2017
Tweet
Share
More Decks by すぎゃーん
See All by すぎゃーん
機械学習モデル開発と データセット管理での GCP活用 / 2019-03-23 GCPUG in Nara #3
sugyan
1
3.1k
line-bot-sdk-go (Go SDK for the LINE Messaging API) / LINE.go #1
sugyan
0
110
趣味でTensorFlowで画像分類 するためのデータセットを どうにかする話 / 2018-12-04 Mix Leap Study #29
sugyan
0
3.4k
DeepLearningによるアイドル顔識別を支える技術 / 2017-08-04 builderscon tokyo
sugyan
8
13k
2017-08-04-builderscon-tokyo-lt
sugyan
0
3.7k
WebエンジニアがTensorFlowで機械学習に入門しながら顔識別アプリを作ってみた / 2016-05-20 Machine Learning Kotohajime
sugyan
13
110k
TensorFlowによるDeep Learningでアイドルの顔識別する話
sugyan
6
4k
Yokohama.pm #8 LT
sugyan
1
590
Other Decks in Technology
See All in Technology
30→150人のエンジニア組織拡大に伴うアジャイル文化を醸成する役割と取り組みの変化
nagata03
0
300
わたしがEMとして入社した「最初の100日」の過ごし方 / EMConfJp2025
daiksy
14
5.4k
技術スタックだけじゃない、業務ドメイン知識のオンボーディングも同じくらいの量が必要な話
niftycorp
PRO
0
130
Introduction to OpenSearch Project - Search Engineering Tech Talk 2025 Winter
tkykenmt
2
170
[OpsJAWS Meetup33 AIOps] Amazon Bedrockガードレールで守る安全なAI運用
akiratameto
1
130
What's new in Go 1.24?
ciarana
1
110
アジャイルな開発チームでテスト戦略の話は誰がする? / Who Talks About Test Strategy?
ak1210
1
770
AI Agent時代なのでAWSのLLMs.txtが欲しい!
watany
3
350
入門 PEAK Threat Hunting @SECCON
odorusatoshi
0
180
Aurora PostgreSQLがCloudWatch Logsに 出力するログの課金を削減してみる #jawsdays2025
non97
1
240
ExaDB-XSで利用されているExadata Exascaleについて
oracle4engineer
PRO
3
300
【内製開発Summit 2025】イオンスマートテクノロジーの内製化組織の作り方/In-house-development-summit-AST
aeonpeople
2
1.1k
Featured
See All Featured
Designing on Purpose - Digital PM Summit 2013
jponch
117
7.1k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
49
2.3k
How GitHub (no longer) Works
holman
314
140k
Gamification - CAS2011
davidbonilla
80
5.2k
YesSQL, Process and Tooling at Scale
rocio
172
14k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
29
1k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
21
2.5k
How to Think Like a Performance Engineer
csswizardry
22
1.4k
GitHub's CSS Performance
jonrohan
1030
460k
Facilitating Awesome Meetings
lara
53
6.3k
Building Adaptive Systems
keathley
40
2.4k
Transcript
5FOTPS'MPXΛར༻ͨ͠ ΞΠυϧإࣝผʹ͍ͭͯ͋Ε͜Ε ($16('VLVPLBUI ͗͢ΌʔΜ !TVHZBO
ࣗݾհ w ͗͢ΌʔΜ !TVHZBO w 8FCܥΤϯδχΞ w 1FSMͱ͔+BWBͱ͔ w
3VCZͱ͔1ZUIPOͱ͔(Pͱ͔ w υϧϮλ w CMPHॻ͍ͯ·͢IUUQNFNPTVHZBODPN
ී௨ͷ8FCΤϯδχΞͳͷͰ ʮσΟʔϓϥʔχϯάͬͯͷ͕͍͢͝Β͍͠ʯ ʮͰػցֶशͬͯઐ͕ࣝඞཁͳ͍ͭ͠ Ͱ͠ΐʜʯ ͱ͍͏ײ͡ͰखΛग़ͮ͠Β͔ͬͨ ʙ
5FOTPS'MPXొ ʮ5VUPSJBM༻ҙ͞Ε͍ͯΔ͠ɺૉਓͰͳΜͱ͔ ͳΔ͔ͳʜʁ͜ͷػʹͪΐͬͱ৮ͬͯΈΔ͔ʯͱ
࠷ॳͷҰา./*45 w ͳΜ͔ը૾ೝࣝͰࣈΛྨ͢Δͷ͕l)FMMP 8PSMEzతͳೖ Β͍͠ w ΈࠐΈͷϞσϧͰͷਖ਼ʂ w ʜ͔݁͠͠Ռͷࣈ͚ͩݟͯΠϝʔδΘ͔ͳ͍ͧ w
ࣗͰඳ͍ͯࢼͤΔΠϯλϑΣʔε͕ཉ͍͠ ˠ8FCΞϓϦͰ࡞Ζ͏ IUUQNFNPTVHZBODPNFOUSZ
./*450OMJOF IUUQTUFOTPSqPXNOJTUIFSPLVBQQDPN
ಠࣗͷը૾ྨ՝ w ./*45 $*'"3Λࢼ͠ɺྨϞσϧΛ࡞ͬͯ ը૾Λࣝผͤ͞Δํ๏͍͍͔ͩͨͬͨ w ֶशσʔλΛ༻ҙͰ͖ΕɺҙͷυϝΠϯʹ Ԡ༻Ͱ͖Δͣ
ΞΠυϧإࣝผ w ࣗͷ͖ͳΞΠυϧͨͪࣝผͰ͖Δʜʂʁ w ·͞ʹझຯͷԆઢ্ w Ҏલ͔ΒͬͯΈ͍ͨͱࢥ͍ͬͯͨ w ΞχϝͷྨͳͲͷલྫطʹଟ͋Δ
ඞཁͳͷσʔληοτ w ڭࢣσʔλͱͯ͠إͷը૾ͱͦΕ͕Ͳͷਓ͔Λ ࣔ͢ϥϕϧͷηοτ͕େྔʹඞཁ w lࣗࡱΓzΛΞοϓ͍ͯ͠ΔΞΠυϧଟ͍͠؆୯ ͳͷͰʁʁ ʜͱࢥ͍ͬͯͨ
ରʮΞΠυϧʯ w ਖ਼֬ͳఆٛΉ͔͍ͣ͠ w ·ͣશࠃ֤ͰϥΠϒΛத৺ʹ׆ಈ͍ͯ͠Δ ʮϥΠϒΞΠυϧʯͱͨ͠ w ϝδϟʔͳਓؾΞΠυϧ΄ΜͷҰѲΓ w ઍਓډΔͱݴΘΕ͍ͯΔ
σʔληοτ࡞ w ը૾͚ͩͳΒ؆୯ʹͨ͘͞ΜूΊΒΕΔ w ϒϩάɺ5XJUUFSɺ*OTUBHSBNͳͲͳͲ w ͦΕͧΕը૾͔ΒإྖҬΛΓग़ͯ͠ w ҰͭҰͭϥϕϧΛ͚ཧ͢Δ
0QFO$7Ͱإݕग़ w ͓ख͔ܰΜͨΜ)BBSMJLF$BTDBEFT w ͔͠͠ޡݕग़݁ߏ͋Δ w ࣼΊ͍ͬͯΔͱ΄΅μϝͩͬͨΓ ˠը૾ࣗମΛ͚ͯݕग़͢Δ"1*Λࣗ࡞ IUUQNFNPTVHZBODPNFOUSZ
ϥϕϧ͚σʔλͷཧ w ը૾ʹର͠ϥϕϧΛબ w ೖྗิ͕ඞਢ w Ұཡͯ֬͠ೝɺฤूɺআͳͲ w ૢ࡞֬͘͢͠ೝ͍͢͠ΠϯλϑΣʔε͕ཉ͍͠ ˠཧ༻ͷ8FCΞϓϦΛࣗ࡞
IUUQNFNPTVHZBODPNFOUSZ
w ݕग़ث w 1ZUIPO 0QFO$7 'MBTLͰ+40/"1*Խ w ཧΞϓϦ w 3VCZPO3BJMT
w ఆظλεΫͰΫϩʔϦϯάͯ͠ը૾ऩूɾإݕग़ w ֶशͰ͏σʔληοτ༻όΠφϦੜ
·ͣਓ͘Β͍͔Β IUUQNFNPTVHZBODPNFOUSZ IUUQNFNPTVHZBODPNFOUSZ
ਓͰࢼͯ͠Έͨݟ w ֤݅ͣͭ͘Β͍ͷσʔληοτͰ࡞Εͨ w YͷαΠζͰ$*'"3ϞσϧͰ͘Β͍ w ྨϞσϧΛࣗ࡞ͯ͠վળͷखԠ͑ w YͷαΠζΛೖྗ w
ΈࠐΈΛˠʹ૿͢ w (SBEJFOU%FTDFOU0QUJNJ[FSˠ"EBN0QUJNJ[FS
ྨରΛ૿͢ w ԿઍਓͷରɾԿेສ݅ͷإը૾ w ϥϕϧ͚࡞ۀʹऴΘΓ͕ແ͍ w ͋Δఔͷຕ͕ू·ͬͨ࣌Ͱྨରͱֶͯ͠श w ਫ਼ʹͦΕ΄Ͳظ͠ͳ͍ w
͋Δఔͷಛ௫ΜͰ͘ΕΔͣ w ֶशͤͨ͞ϞσϧͰະྨͷإը૾Λਪ w ͦͷ݁Ռͷਖ਼ޡΛνΣοΫͯ͠σʔλΛ૿͢
ਅ໘ʹੑೳධՁ IUUQNFNPTVHZBODPNFOUSZ
ੑೳධՁͱ࣮ݧ w ͋Δఔͷσʔλ͕ἧͬͨ࣌Ͱ࣮ࢪ w ਓY݅ͷॏෳͳ͠σʔληοτΛ࡞ w ݅ͣͭͰֶश͠ɺ݅Ͱਖ਼ଌఆ w TUFQ΄ͲͷֶशͰʹͳΔ͜ͱΛ֬ೝ w
ύϥϝʔλΛଟগݮΒͯ͠ಉਫ਼͕ग़Δ͜ͱ֬ೝ w ೖྗαΠζ৭ใͷӨڹ࣮ݧ
إࣝผ#05 IUUQNFNPTVHZBODPNFOUSZ
إࣝผ#05 w إࣝผϞσϧΛ࣮ࡍʹࢼͨ͢ΊͷΠϯλϑΣʔε w إը૾ͷࣝผΛ+40/"1*ʹ w -*/&.FTTBHJOH"1*ʹܨ͗ࠞΜͰ#05Խ w ը૾ΛૹΔͱݕग़֤ͨ͠إը૾Λࣝผ w
إݕग़$MPVE7JTJPO"1*Ͱ ͍ɺਫ਼ྑ͍ w ਪͷਖ਼ޡϑΟʔυόοΫΛૹΔػೳ w ֶशσʔλ૿͢ͷΛखͬͯΒ͑ΔΑ͏ʹ
શମਤ
ݱࡏͷঢ়گ w ऩूͨ͠إը૾ສ݅ w ͏ͪສઍ݅΄Ͳϥϕϧ͚ࡁΈ w Γ߹͍ͷϮλΫʹखͬͯΒͬͨΓ w ֶश͍ͯ͠Δྨରϥϕϧ݅ w
ొ͍ͯ͠ΔΞΠυϧ ਓ΄Ͳ w ͏ͪਓ΄ͲطʹଔۀͳͲͰର֎ʹʜ
ΞΠυϧإࣝผͷߟ w ಉҰਓͰ༷ʑͳإ͕͋Δ w දɺϝΠΫɺ࣌ؒܦաͰมΘΔ w ՃΞϓϦ͕͔ͳΓհ w ͦΕͳΓͷֶशσʔλඞཁͦ͏ w
ͦΕͰͦΕͳΓʹࣝผͰ͖͍ͯΔ w ಥવͷଔۀղࢄ͕ͱͯͭΒ͍
ࠓޙͷ՝ɾల w Γσʔληοτ࡞େ͖ͳ՝ w ܧଓͯ͠ूΊଓ͚ΔΈ࡞Γ w ະը૾ͷΫϥελϦϯάࢼ͍ͯ͠Δ w ਫ਼্ w
͍·ͩʹෆՄղͳޡࣝผଟ͍ w ྨର֎ͷإΛͲ͏ѻ͏͔ʁ
ࠓޙͷ՝ɾల w إݕग़ͷࣗ࡞ w 4JOHMF4IPU.VMUJCPY%FUFDUPS 44% w ߴߴਫ਼Ͱମݕग़Ͱ͖ΔΒ͍͠ w
ݩͷ࣮$B⒎Fɺ5FOTPS'MPXҠ২͋Δ w ϞσϧܰྔԽɺεϚϗͷΧϝϥΞϓϦʹʁ w ੜܥ͏গ͠ൃల͍ͤͨ͞
%$("/ʹΑΔը૾ੜ IUUQNFNPTVHZBODPNFOUSZ
5FOTPS#PBSEͰͷՄࢹԽ IUUQNFNPTVHZBODPNFOUSZ
5FOTPS'MPXͷྑ͍ͱ͜Ζ w ॳ৺ऀͰೖ͍͢͠ w υΩϡϝϯτಡΊ͍͍ͩͨԿͱ͔ͳΔ w ࢀߟʹͰ͖Δهࣄଟ͍ w ։ൃ͕׆ൃ w
͏͖͡ʂ w ίϛϡχςΟ׆ൃ
3FQPTJUPSJFT w IUUQTHJUIVCDPNTVHZBOUFOTPSqPXNOJTU w IUUQTHJUIVCDPNTVHZBOGBDFEFUFDUPS w IUUQTHJUIVCDPNTVHZBOGBDFDPMMFDUPS w IUUQTHJUIVCDPNTVHZBOUGGBDFSFDPHOJ[FS w
IUUQTHJUIVCDPNTVHZBOUGEDHBO w IUUQTHJUIVCDPNTVHZBOGBDFHFOFSBUPS w IUUQTHJUIVCDPNTVHZBOJEPMGBDFMJOFCPU
͋Γ͕ͱ͏͍͟͝·ͨ͠