Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
TensorFlowを利用した アイドル顔識別についてあれこれ / 2017-01-28 GC...
Search
すぎゃーん
January 28, 2017
Technology
2
2.2k
TensorFlowを利用した アイドル顔識別についてあれこれ / 2017-01-28 GCPUG Fukuoka 5th
GCPUG Fukuoka 5th 〜Machine Learning 祭〜
https://gcpugfukuoka.connpass.com/event/46049/
で使った資料です
すぎゃーん
January 28, 2017
Tweet
Share
More Decks by すぎゃーん
See All by すぎゃーん
機械学習モデル開発と データセット管理での GCP活用 / 2019-03-23 GCPUG in Nara #3
sugyan
1
3.1k
line-bot-sdk-go (Go SDK for the LINE Messaging API) / LINE.go #1
sugyan
0
100
趣味でTensorFlowで画像分類 するためのデータセットを どうにかする話 / 2018-12-04 Mix Leap Study #29
sugyan
0
3.3k
DeepLearningによるアイドル顔識別を支える技術 / 2017-08-04 builderscon tokyo
sugyan
8
13k
2017-08-04-builderscon-tokyo-lt
sugyan
0
3.7k
WebエンジニアがTensorFlowで機械学習に入門しながら顔識別アプリを作ってみた / 2016-05-20 Machine Learning Kotohajime
sugyan
13
110k
TensorFlowによるDeep Learningでアイドルの顔識別する話
sugyan
6
4k
Yokohama.pm #8 LT
sugyan
1
590
Other Decks in Technology
See All in Technology
実践! ソフトウェアエンジニアリングの価値の計測 ── Effort、Output、Outcome、Impact
nomuson
0
2k
20250116_JAWS_Osaka
takuyay0ne
2
200
コロプラのオンボーディングを採用から語りたい
colopl
5
1.2k
なぜfreeeはハブ・アンド・スポーク型の データメッシュアーキテクチャにチャレンジするのか?
shinichiro_joya
2
450
Unsafe.BitCast のすゝめ。
nenonaninu
0
200
JuliaTokaiとJuliaLangJaの紹介 for NGK2025S
antimon2
1
110
GoogleのAIエージェント論 Authors: Julia Wiesinger, Patrick Marlow and Vladimir Vuskovic
customercloud
PRO
0
150
2024AWSで個人的にアツかったアップデート
nagisa53
1
110
0→1事業こそPMは営業すべし / pmconf #落選お披露目 / PM should do sales in zero to one
roki_n_
PRO
1
1.3k
信頼されるためにやったこと、 やらなかったこと。/What we did to be trusted, What we did not do.
bitkey
PRO
0
2.2k
技術に触れたり、顔を出そう
maruto
1
150
Oracle Exadata Database Service(Dedicated Infrastructure):サービス概要のご紹介
oracle4engineer
PRO
0
12k
Featured
See All Featured
A Philosophy of Restraint
colly
203
16k
Statistics for Hackers
jakevdp
797
220k
Scaling GitHub
holman
459
140k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
28
4.5k
Designing on Purpose - Digital PM Summit 2013
jponch
116
7.1k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
33
2.7k
Typedesign – Prime Four
hannesfritz
40
2.5k
Producing Creativity
orderedlist
PRO
343
39k
Visualization
eitanlees
146
15k
Optimising Largest Contentful Paint
csswizardry
33
3k
Optimizing for Happiness
mojombo
376
70k
Transcript
5FOTPS'MPXΛར༻ͨ͠ ΞΠυϧإࣝผʹ͍ͭͯ͋Ε͜Ε ($16('VLVPLBUI ͗͢ΌʔΜ !TVHZBO
ࣗݾհ w ͗͢ΌʔΜ !TVHZBO w 8FCܥΤϯδχΞ w 1FSMͱ͔+BWBͱ͔ w
3VCZͱ͔1ZUIPOͱ͔(Pͱ͔ w υϧϮλ w CMPHॻ͍ͯ·͢IUUQNFNPTVHZBODPN
ී௨ͷ8FCΤϯδχΞͳͷͰ ʮσΟʔϓϥʔχϯάͬͯͷ͕͍͢͝Β͍͠ʯ ʮͰػցֶशͬͯઐ͕ࣝඞཁͳ͍ͭ͠ Ͱ͠ΐʜʯ ͱ͍͏ײ͡ͰखΛग़ͮ͠Β͔ͬͨ ʙ
5FOTPS'MPXొ ʮ5VUPSJBM༻ҙ͞Ε͍ͯΔ͠ɺૉਓͰͳΜͱ͔ ͳΔ͔ͳʜʁ͜ͷػʹͪΐͬͱ৮ͬͯΈΔ͔ʯͱ
࠷ॳͷҰา./*45 w ͳΜ͔ը૾ೝࣝͰࣈΛྨ͢Δͷ͕l)FMMP 8PSMEzతͳೖ Β͍͠ w ΈࠐΈͷϞσϧͰͷਖ਼ʂ w ʜ͔݁͠͠Ռͷࣈ͚ͩݟͯΠϝʔδΘ͔ͳ͍ͧ w
ࣗͰඳ͍ͯࢼͤΔΠϯλϑΣʔε͕ཉ͍͠ ˠ8FCΞϓϦͰ࡞Ζ͏ IUUQNFNPTVHZBODPNFOUSZ
./*450OMJOF IUUQTUFOTPSqPXNOJTUIFSPLVBQQDPN
ಠࣗͷը૾ྨ՝ w ./*45 $*'"3Λࢼ͠ɺྨϞσϧΛ࡞ͬͯ ը૾Λࣝผͤ͞Δํ๏͍͍͔ͩͨͬͨ w ֶशσʔλΛ༻ҙͰ͖ΕɺҙͷυϝΠϯʹ Ԡ༻Ͱ͖Δͣ
ΞΠυϧإࣝผ w ࣗͷ͖ͳΞΠυϧͨͪࣝผͰ͖Δʜʂʁ w ·͞ʹझຯͷԆઢ্ w Ҏલ͔ΒͬͯΈ͍ͨͱࢥ͍ͬͯͨ w ΞχϝͷྨͳͲͷલྫطʹଟ͋Δ
ඞཁͳͷσʔληοτ w ڭࢣσʔλͱͯ͠إͷը૾ͱͦΕ͕Ͳͷਓ͔Λ ࣔ͢ϥϕϧͷηοτ͕େྔʹඞཁ w lࣗࡱΓzΛΞοϓ͍ͯ͠ΔΞΠυϧଟ͍͠؆୯ ͳͷͰʁʁ ʜͱࢥ͍ͬͯͨ
ରʮΞΠυϧʯ w ਖ਼֬ͳఆٛΉ͔͍ͣ͠ w ·ͣશࠃ֤ͰϥΠϒΛத৺ʹ׆ಈ͍ͯ͠Δ ʮϥΠϒΞΠυϧʯͱͨ͠ w ϝδϟʔͳਓؾΞΠυϧ΄ΜͷҰѲΓ w ઍਓډΔͱݴΘΕ͍ͯΔ
σʔληοτ࡞ w ը૾͚ͩͳΒ؆୯ʹͨ͘͞ΜूΊΒΕΔ w ϒϩάɺ5XJUUFSɺ*OTUBHSBNͳͲͳͲ w ͦΕͧΕը૾͔ΒإྖҬΛΓग़ͯ͠ w ҰͭҰͭϥϕϧΛ͚ཧ͢Δ
0QFO$7Ͱإݕग़ w ͓ख͔ܰΜͨΜ)BBSMJLF$BTDBEFT w ͔͠͠ޡݕग़݁ߏ͋Δ w ࣼΊ͍ͬͯΔͱ΄΅μϝͩͬͨΓ ˠը૾ࣗମΛ͚ͯݕग़͢Δ"1*Λࣗ࡞ IUUQNFNPTVHZBODPNFOUSZ
ϥϕϧ͚σʔλͷཧ w ը૾ʹର͠ϥϕϧΛબ w ೖྗิ͕ඞਢ w Ұཡͯ֬͠ೝɺฤूɺআͳͲ w ૢ࡞֬͘͢͠ೝ͍͢͠ΠϯλϑΣʔε͕ཉ͍͠ ˠཧ༻ͷ8FCΞϓϦΛࣗ࡞
IUUQNFNPTVHZBODPNFOUSZ
w ݕग़ث w 1ZUIPO 0QFO$7 'MBTLͰ+40/"1*Խ w ཧΞϓϦ w 3VCZPO3BJMT
w ఆظλεΫͰΫϩʔϦϯάͯ͠ը૾ऩूɾإݕग़ w ֶशͰ͏σʔληοτ༻όΠφϦੜ
·ͣਓ͘Β͍͔Β IUUQNFNPTVHZBODPNFOUSZ IUUQNFNPTVHZBODPNFOUSZ
ਓͰࢼͯ͠Έͨݟ w ֤݅ͣͭ͘Β͍ͷσʔληοτͰ࡞Εͨ w YͷαΠζͰ$*'"3ϞσϧͰ͘Β͍ w ྨϞσϧΛࣗ࡞ͯ͠վળͷखԠ͑ w YͷαΠζΛೖྗ w
ΈࠐΈΛˠʹ૿͢ w (SBEJFOU%FTDFOU0QUJNJ[FSˠ"EBN0QUJNJ[FS
ྨରΛ૿͢ w ԿઍਓͷରɾԿेສ݅ͷإը૾ w ϥϕϧ͚࡞ۀʹऴΘΓ͕ແ͍ w ͋Δఔͷຕ͕ू·ͬͨ࣌Ͱྨରͱֶͯ͠श w ਫ਼ʹͦΕ΄Ͳظ͠ͳ͍ w
͋Δఔͷಛ௫ΜͰ͘ΕΔͣ w ֶशͤͨ͞ϞσϧͰະྨͷإը૾Λਪ w ͦͷ݁Ռͷਖ਼ޡΛνΣοΫͯ͠σʔλΛ૿͢
ਅ໘ʹੑೳධՁ IUUQNFNPTVHZBODPNFOUSZ
ੑೳධՁͱ࣮ݧ w ͋Δఔͷσʔλ͕ἧͬͨ࣌Ͱ࣮ࢪ w ਓY݅ͷॏෳͳ͠σʔληοτΛ࡞ w ݅ͣͭͰֶश͠ɺ݅Ͱਖ਼ଌఆ w TUFQ΄ͲͷֶशͰʹͳΔ͜ͱΛ֬ೝ w
ύϥϝʔλΛଟগݮΒͯ͠ಉਫ਼͕ग़Δ͜ͱ֬ೝ w ೖྗαΠζ৭ใͷӨڹ࣮ݧ
إࣝผ#05 IUUQNFNPTVHZBODPNFOUSZ
إࣝผ#05 w إࣝผϞσϧΛ࣮ࡍʹࢼͨ͢ΊͷΠϯλϑΣʔε w إը૾ͷࣝผΛ+40/"1*ʹ w -*/&.FTTBHJOH"1*ʹܨ͗ࠞΜͰ#05Խ w ը૾ΛૹΔͱݕग़֤ͨ͠إը૾Λࣝผ w
إݕग़$MPVE7JTJPO"1*Ͱ ͍ɺਫ਼ྑ͍ w ਪͷਖ਼ޡϑΟʔυόοΫΛૹΔػೳ w ֶशσʔλ૿͢ͷΛखͬͯΒ͑ΔΑ͏ʹ
શମਤ
ݱࡏͷঢ়گ w ऩूͨ͠إը૾ສ݅ w ͏ͪສઍ݅΄Ͳϥϕϧ͚ࡁΈ w Γ߹͍ͷϮλΫʹखͬͯΒͬͨΓ w ֶश͍ͯ͠Δྨରϥϕϧ݅ w
ొ͍ͯ͠ΔΞΠυϧ ਓ΄Ͳ w ͏ͪਓ΄ͲطʹଔۀͳͲͰର֎ʹʜ
ΞΠυϧإࣝผͷߟ w ಉҰਓͰ༷ʑͳإ͕͋Δ w දɺϝΠΫɺ࣌ؒܦաͰมΘΔ w ՃΞϓϦ͕͔ͳΓհ w ͦΕͳΓͷֶशσʔλඞཁͦ͏ w
ͦΕͰͦΕͳΓʹࣝผͰ͖͍ͯΔ w ಥવͷଔۀղࢄ͕ͱͯͭΒ͍
ࠓޙͷ՝ɾల w Γσʔληοτ࡞େ͖ͳ՝ w ܧଓͯ͠ूΊଓ͚ΔΈ࡞Γ w ະը૾ͷΫϥελϦϯάࢼ͍ͯ͠Δ w ਫ਼্ w
͍·ͩʹෆՄղͳޡࣝผଟ͍ w ྨର֎ͷإΛͲ͏ѻ͏͔ʁ
ࠓޙͷ՝ɾల w إݕग़ͷࣗ࡞ w 4JOHMF4IPU.VMUJCPY%FUFDUPS 44% w ߴߴਫ਼Ͱମݕग़Ͱ͖ΔΒ͍͠ w
ݩͷ࣮$B⒎Fɺ5FOTPS'MPXҠ২͋Δ w ϞσϧܰྔԽɺεϚϗͷΧϝϥΞϓϦʹʁ w ੜܥ͏গ͠ൃల͍ͤͨ͞
%$("/ʹΑΔը૾ੜ IUUQNFNPTVHZBODPNFOUSZ
5FOTPS#PBSEͰͷՄࢹԽ IUUQNFNPTVHZBODPNFOUSZ
5FOTPS'MPXͷྑ͍ͱ͜Ζ w ॳ৺ऀͰೖ͍͢͠ w υΩϡϝϯτಡΊ͍͍ͩͨԿͱ͔ͳΔ w ࢀߟʹͰ͖Δهࣄଟ͍ w ։ൃ͕׆ൃ w
͏͖͡ʂ w ίϛϡχςΟ׆ൃ
3FQPTJUPSJFT w IUUQTHJUIVCDPNTVHZBOUFOTPSqPXNOJTU w IUUQTHJUIVCDPNTVHZBOGBDFEFUFDUPS w IUUQTHJUIVCDPNTVHZBOGBDFDPMMFDUPS w IUUQTHJUIVCDPNTVHZBOUGGBDFSFDPHOJ[FS w
IUUQTHJUIVCDPNTVHZBOUGEDHBO w IUUQTHJUIVCDPNTVHZBOGBDFHFOFSBUPS w IUUQTHJUIVCDPNTVHZBOJEPMGBDFMJOFCPU
͋Γ͕ͱ͏͍͟͝·ͨ͠