Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
10分で学ぶ、RAGの仕組みと実践
Search
Marimo
April 30, 2025
Technology
0
1.2k
10分で学ぶ、RAGの仕組みと実践
2025/4/24 CDLE北海道主催RAGを実装してみよう!ミニハンズオン会のセミナー資料です
Marimo
April 30, 2025
Tweet
Share
More Decks by Marimo
See All by Marimo
いま注目のAIエージェントを作ってみよう
supermarimobros
0
530
ゼロから学ぶ! MCP入門ハンズオン
supermarimobros
1
1k
Other Decks in Technology
See All in Technology
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
5
59k
First-Principles-of-Scrum
hiranabe
3
1.3k
Oracle Database@Google Cloud:サービス概要のご紹介
oracle4engineer
PRO
1
830
人工知能のための哲学塾 ニューロフィロソフィ篇 第零夜 「ニューロフィロソフィとは何か?」
miyayou
0
360
チームで安全にClaude Codeを利用するためのプラクティス / team-claude-code-practices
tomoki10
5
2.5k
Bedrock AgentCore Evaluationsで学ぶLLM as a judge入門
shichijoyuhi
2
320
AWS re:Invent 2025 を振り返る
kazzpapa3
2
110
20251225_たのしい出張報告&IgniteRecap!
ponponmikankan
0
110
2025年のデザインシステムとAI 活用を振り返る
leveragestech
0
700
テストセンター受験、オンライン受験、どっちなんだい?
yama3133
0
200
国井さんにPurview の話を聞く会
sophiakunii
1
330
Java 25に至る道
skrb
3
150
Featured
See All Featured
Docker and Python
trallard
47
3.7k
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
0
400
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
Lightning talk: Run Django tests with GitHub Actions
sabderemane
0
97
Navigating the moral maze — ethical principles for Al-driven product design
skipperchong
1
220
What does AI have to do with Human Rights?
axbom
PRO
0
1.9k
AI Search: Where Are We & What Can We Do About It?
aleyda
0
6.8k
How STYLIGHT went responsive
nonsquared
100
6k
The Language of Interfaces
destraynor
162
26k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.5k
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
44
職位にかかわらず全員がリーダーシップを発揮するチーム作り / Building a team where everyone can demonstrate leadership regardless of position
madoxten
54
49k
Transcript
RAGを実装してみよう!ミニハンズオン会 10分で学ぶ、RAGの仕組みと実践 CDLE北海道 池田広樹
自己紹介 池田 広樹 札幌市在住のエンジニア 大学時代に生化学分野で多変量解析を経験 代謝物の網羅的解析の分野 昨年、 「E資格チャレンジ」でE資格取得 その他、AIコンペのKaggleや松尾研LLM2024など に参加してます
①RAGの概要
①RAGの概要 LLMが外部知識に基づき回答する技術 最新の知識を反映、ハルシネーションを抑えるなどの効果 検索部位(Retriever)と生成部位(Generation)に分かれます 池田広樹って何者? 問い合わせ(クエリ) DB 外部知識 池田広樹は札幌在住のエン ジニアで・・・
池田広樹はPython/Flutter が得意です・・ 関連した文章 検索部位 (Retriever) RAG (Retrieval-Augmented Generation: 検索拡張生成)
①RAGの概要 池田広樹は札幌在住のエン ジニアで・・・ 池田広樹はPython/Flutter が得意です・・ 関連した文章 池田広樹って何者? 以下の情報を参照して答えてく ださい 池田広樹は札幌在住のエン
ジニアで・・・ 池 田 広 樹 は Python/Flutter が得意です・・ 池田広樹は札幌在住 のエンジニアで、 Python/Flutterが得 意です。 生成部分 (Generation) RAG (Retrieval-Augmented Generation: 検索拡張生成) LLMが外部知識に基づき回答する技術 最新の知識を反映、ハルシネーションを抑えるなどの効果 検索部位(Retriever)と生成部位(Generation)に分かれます
②検索部位(Retriever)
RAGは検索が重要 → どれだけ問い合わせ(クエリ)に関連した文章を見つけられるか ②検索部位(Retriever) インデックス検索 埋め込みベクトルの類似度・距離計算 コサイン類似度, ユークリッド距離(L2ノルム) ... キーワード検索
単語の出現頻度に基づいて類似度を計算 TF-IDF, BM25 知識グラフ GraphRAG
②検索部位(Retriever) インデックス検索 埋め込みベクトルの類似度・距離計算 コサイン類似度, ユークリッド距離(L2ノルム)... 意味的に似てる 意味的に似てない 池田広樹って何者? [0.0228, -0.1749,
0.1850, -0.1225, 0.1583, -0.6414, -0.0728, 0.6913] 埋め込みモデルによってベクトル変換 池田広樹は札幌在住のエンジニアで・・・ 池田広樹って何者? CDLE北海道では、北海道でAIに興味のある方々を・・・
②検索部位(Retriever) キーワード検索 単語の出現頻度に基づいて類似度を計算 TF-IDF, BM25 池田広樹って何者? [池田, 広樹, 何者] 池田広樹は札幌在住のエンジニアで・・・
[池田, 広樹, 札幌, 在住, エンジニア...] CDLE北海道では、北海道でAIに興味のある方々を・・・ [CDLE北海道, 北海道, AI, 興味, ある, 方々...] 単語が一致するほどスコアが高く、 珍しい単語はスコアが高い 高スコア 低スコア
③ハンズオンの流れ
③ハンズオンの流れ 1部:RAGの基本原理を学ぶ (30分) 埋め込みベクトルに触れる RAGの検索部分(Retriever)に触れる インデックス検索の基礎 キーワード検索の基礎 ハイブリット検索(インデックス検索とキーワード検索の融合)に触れる 2部:langchainを使って、実践的なRAGに触れる (20分)
Chunking: 文章を小さな単位(チャンク)に分割するプロセス langchainの「チェイン」を使ったRAGの構築 RAGの定量的な評価(RAGAS)
🎯 それでは実際に手を動かしてみましょう!