Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Regularizations of Inverse Problems

Samuel Vaiter
September 06, 2013

Regularizations of Inverse Problems

GRETSI'13, Quartz, Brest, September 2013.

Samuel Vaiter

September 06, 2013
Tweet

More Decks by Samuel Vaiter

Other Decks in Science

Transcript

  1. Régularisation de problèmes inverses Analyse unifiée de la robustesse Samuel

    VAITER CNRS, CEREMADE, Université Paris-Dauphine, France Travaux en collaboration avec M. GOLBABAEE, G. PEYRÉ et J. FADILI
  2. The Variational Approach x argmin x RN 1 2 ||y

    x||2 2 + J(x) Data fidelity Regularity
  3. The Variational Approach x argmin x RN 1 2 ||y

    x||2 2 + J(x) Data fidelity Regularity J(x) = || x||2 J(x) = || x||1
  4. The Variational Approach x argmin x RN 1 2 ||y

    x||2 2 + J(x) Data fidelity Regularity J(x) = || x||2 J(x) = || x||1 sparsity analysis-sparsity group-sparsity nuclear norm Tikhonov Total Variation Anti-sparse Polyhedral L1 + TV ... atomic norm decomposable norm Candidate J
  5. Objectives Model selection performance x0 x w Prior model J

    How close ? in term of SNR in term of features
  6. Union of Linear Models Union of models: T T linear

    spaces block sparsity T sparsity
  7. Union of Linear Models Union of models: T T linear

    spaces block sparsity T sparsity analysis sparsity
  8. Union of Linear Models Union of models: T T linear

    spaces block sparsity low rank T sparsity analysis sparsity
  9. Union of Linear Models Union of models: T T linear

    spaces block sparsity low rank Objective Encode T in a function T sparsity analysis sparsity
  10. Gauges 1 J(x) J : RN R+ convex C C

    = {x : J(x) 1} J( x) = J(x), 0
  11. Gauges 1 J(x) J : RN R+ convex C C

    = {x : J(x) 1} Geometry of C Union of Models (T )T T x T x x 0 T0 x x 0 T0 x 0 x T T0 ||x||1 |x1|+||x2,3|| ||x|| ||x|| J( x) = J(x), 0
  12. J(x) = RN : x , J(x ) J(x)+ ,

    x x Subdifferential |x| 0
  13. J(x) = RN : x , J(x ) J(x)+ ,

    x x Subdifferential |x| 0 |·|(0) = [ 1,1] x = 0, |·|(x) = {sign(x)}
  14. From the Subdifferential to the Model J(x) x 0 J(x)

    x 0 Tx= VectHull( J(x)) Tx Tx Tx = : supp( ) supp(x)
  15. From the Subdifferential to the Model J(x) x 0 J(x)

    x 0 ex = ProjTx ( J(x)) ex ex ex = sign(x) Tx= VectHull( J(x)) Tx Tx Tx = : supp( ) supp(x)
  16. Regularizations and their Models J(x) = ||x||1 ex = sign(x)

    Tx = : supp( ) supp(x) x x J(x) = b ||xb|| ex = (N (xb))b B Tx = : supp( ) supp(x) x N (xb) = xb/||xb|| J(x) = ||x||∗ ex =UV Tx = : U V = 0 x x =UΛV ∗ J(x) = ||x||∞ ex = |I| 1 sign(x) Tx = : I sign(xI ) x x I = {i : |xi | = ||x||∞}
  17. Dual Certificates and Model Selection x argmin x RN 1

    2 ||y x||2 2 + J(x) Hypothesis: Ker Tx0 = {0} J regular enough
  18. Dual Certificates and Model Selection x argmin x RN 1

    2 ||y x||2 2 + J(x) Hypothesis: Ker Tx0 = {0} J regular enough ¯ D = Im ri( J(x0)) Tight dual certificates: x = x0 J(x) x
  19. Dual Certificates and Model Selection x argmin x RN 1

    2 ||y x||2 2 + J(x) Hypothesis: 0 = ( + Tx0 ) ex0 Minimal norm pre-certificate: Tx = Tx0 and ||x x0|| = O(||w||) If 0 ¯ D,||w|| small enough and ||w||, then x is the unique solution. Moreover, [V. et al. 2013] 1: [Fuchs 2004] 1 2: [Bach 2008] Ker Tx0 = {0} J regular enough ¯ D = Im ri( J(x0)) Tight dual certificates: x = x0 J(x) x
  20. Example: Sparse Deconvolution x = i xi (· i) J(x)

    = ||x||1 Increasing : reduces correlation. reduces resolution. x0 x0
  21. Example: Sparse Deconvolution x = i xi (· i) J(x)

    = ||x||1 Increasing : reduces correlation. reduces resolution. x0 x0 I = j : x0[j] = 0 || 0,Ic || < 1 0 ¯ D support recovery || 0,Ic || 1 2 20
  22. Example: 1D TV Denoising J(x) = || x||1 = Id

    I = {i : ( x0)i = 0} x0 +1 1 0 = div( 0) where j I,( 0)j = 0 x0 I J || 0,Ic || < 1 Support stability
  23. Example: 1D TV Denoising J(x) = || x||1 = Id

    I = {i : ( x0)i = 0} x0 +1 1 0 = div( 0) where j I,( 0)j = 0 x0 I J || 0,Ic || < 1 Support stability x0 || 0,Ic || = 1 2-stability only
  24. Conclusion Gauges: encode linear models as singular points Certificates: guarantees

    of model selection / 2 robustness (see poster 208 for a pure robustness result)
  25. Conclusion Merci de votre attention ! Gauges: encode linear models

    as singular points Certificates: guarantees of model selection / 2 robustness (see poster 208 for a pure robustness result)