Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Regularizations of Inverse Problems
Search
Samuel Vaiter
September 06, 2013
Science
0
41
Regularizations of Inverse Problems
GRETSI'13, Quartz, Brest, September 2013.
Samuel Vaiter
September 06, 2013
Tweet
Share
More Decks by Samuel Vaiter
See All by Samuel Vaiter
Low Complexity Regularizations: A ''Localization'' Result
svaiter
0
58
A First Look at Proximal Methods
svaiter
0
200
Fast Distributed Total Variation
svaiter
0
110
Low Complexity Regularizations: A Localization Result
svaiter
0
64
Low Complexity Regularizations: a Localization Result
svaiter
0
110
Model Selection with Partly Smooth Functions
svaiter
0
33
Low Complexity Models: Robustness
svaiter
0
56
Low Complexity Models: Robustness and Sensivity
svaiter
0
34
Recovery Guarantees for Low Complexity Models
svaiter
1
71
Other Decks in Science
See All in Science
Iniciativas independentes de divulgação científica: o caso do Movimento #CiteMulheresNegras
taisso
0
1.2k
ICRA2024 速報
rpc
3
6.2k
Tensor Representations in Signal Processing and Machine Learning (Tutorial at APSIPA-ASC 2020)
yokotatsuya
0
160
白金鉱業Meetup Vol.15 DMLによる条件付処置効果の推定_sotaroIZUMI_20240919
brainpadpr
2
730
小杉考司(専修大学)
kosugitti
2
630
オンプレミス環境にKubernetesを構築する
koukimiura
0
180
How were Quaternion discovered
kinakomoti321
2
1.2k
メール送信サーバの集約における透過型SMTP プロキシの定量評価 / Quantitative Evaluation of Transparent SMTP Proxy in Email Sending Server Aggregation
linyows
0
810
地質研究者が苦労しながら運用する情報公開システムの実例
naito2000
0
130
FRAM - 複雑な社会技術システムの理解と分析
__ymgc__
1
120
Factorized Diffusion: Perceptual Illusions by Noise Decomposition
tomoaki0705
0
360
山形とさくらんぼに関するレクチャー(YG-900)
07jp27
1
280
Featured
See All Featured
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Testing 201, or: Great Expectations
jmmastey
42
7.4k
The Language of Interfaces
destraynor
157
24k
Facilitating Awesome Meetings
lara
53
6.3k
Fireside Chat
paigeccino
37
3.4k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
The Pragmatic Product Professional
lauravandoore
33
6.5k
Optimizing for Happiness
mojombo
377
70k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
2.9k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
8
710
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Transcript
Régularisation de problèmes inverses Analyse unifiée de la robustesse Samuel
VAITER CNRS, CEREMADE, Université Paris-Dauphine, France Travaux en collaboration avec M. GOLBABAEE, G. PEYRÉ et J. FADILI
Linear Inverse Problems inpainting denoising super-resolution Forward model y =
x0 + w observations noise input operator
The Variational Approach x argmin x RN 1 2 ||y
x||2 2 + J(x) Data fidelity Regularity
The Variational Approach x argmin x RN 1 2 ||y
x||2 2 + J(x) Data fidelity Regularity J(x) = || x||2 J(x) = || x||1
The Variational Approach x argmin x RN 1 2 ||y
x||2 2 + J(x) Data fidelity Regularity J(x) = || x||2 J(x) = || x||1 sparsity analysis-sparsity group-sparsity nuclear norm Tikhonov Total Variation Anti-sparse Polyhedral L1 + TV ... atomic norm decomposable norm Candidate J
Objectives Model selection performance x0 x w Prior model J
Objectives Model selection performance x0 x w Prior model J
Objectives Model selection performance x0 x w Prior model J
How close ? in term of SNR in term of features
Union of Linear Models Union of models: T T linear
spaces
Union of Linear Models Union of models: T T linear
spaces T sparsity
Union of Linear Models Union of models: T T linear
spaces block sparsity T sparsity
Union of Linear Models Union of models: T T linear
spaces block sparsity T sparsity analysis sparsity
Union of Linear Models Union of models: T T linear
spaces block sparsity low rank T sparsity analysis sparsity
Union of Linear Models Union of models: T T linear
spaces block sparsity low rank Objective Encode T in a function T sparsity analysis sparsity
Gauges 1 J(x) J : RN R+ convex J( x)
= J(x), 0
Gauges 1 J(x) J : RN R+ convex C C
= {x : J(x) 1} J( x) = J(x), 0
Gauges 1 J(x) J : RN R+ convex C C
= {x : J(x) 1} Geometry of C Union of Models (T )T T x T x x 0 T0 x x 0 T0 x 0 x T T0 ||x||1 |x1|+||x2,3|| ||x|| ||x|| J( x) = J(x), 0
Subdifferential |x| 0
Subdifferential |x| 0
J(x) = RN : x , J(x ) J(x)+ ,
x x Subdifferential |x| 0
J(x) = RN : x , J(x ) J(x)+ ,
x x Subdifferential |x| 0 |·|(0) = [ 1,1] x = 0, |·|(x) = {sign(x)}
From the Subdifferential to the Model J(x) x 0 J(x)
x 0
From the Subdifferential to the Model J(x) x 0 J(x)
x 0 Tx= VectHull( J(x)) Tx Tx Tx = : supp( ) supp(x)
From the Subdifferential to the Model J(x) x 0 J(x)
x 0 ex = ProjTx ( J(x)) ex ex ex = sign(x) Tx= VectHull( J(x)) Tx Tx Tx = : supp( ) supp(x)
Regularizations and their Models J(x) = ||x||1 ex = sign(x)
Tx = : supp( ) supp(x) x x J(x) = b ||xb|| ex = (N (xb))b B Tx = : supp( ) supp(x) x N (xb) = xb/||xb|| J(x) = ||x||∗ ex =UV Tx = : U V = 0 x x =UΛV ∗ J(x) = ||x||∞ ex = |I| 1 sign(x) Tx = : I sign(xI ) x x I = {i : |xi | = ||x||∞}
Dual Certificates and Model Selection x argmin x RN 1
2 ||y x||2 2 + J(x) Hypothesis: Ker Tx0 = {0} J regular enough
Dual Certificates and Model Selection x argmin x RN 1
2 ||y x||2 2 + J(x) Hypothesis: Ker Tx0 = {0} J regular enough ¯ D = Im ri( J(x0)) Tight dual certificates: x = x0 J(x) x
Dual Certificates and Model Selection x argmin x RN 1
2 ||y x||2 2 + J(x) Hypothesis: 0 = ( + Tx0 ) ex0 Minimal norm pre-certificate: Tx = Tx0 and ||x x0|| = O(||w||) If 0 ¯ D,||w|| small enough and ||w||, then x is the unique solution. Moreover, [V. et al. 2013] 1: [Fuchs 2004] 1 2: [Bach 2008] Ker Tx0 = {0} J regular enough ¯ D = Im ri( J(x0)) Tight dual certificates: x = x0 J(x) x
Example: Sparse Deconvolution x = i xi (· i) J(x)
= ||x||1 Increasing : reduces correlation. reduces resolution. x0 x0
Example: Sparse Deconvolution x = i xi (· i) J(x)
= ||x||1 Increasing : reduces correlation. reduces resolution. x0 x0 I = j : x0[j] = 0 || 0,Ic || < 1 0 ¯ D support recovery || 0,Ic || 1 2 20
Example: 1D TV Denoising J(x) = || x||1 = Id
I = {i : ( x0)i = 0} x0
Example: 1D TV Denoising J(x) = || x||1 = Id
I = {i : ( x0)i = 0} x0 +1 1 0 = div( 0) where j I,( 0)j = 0 x0 I J || 0,Ic || < 1 Support stability
Example: 1D TV Denoising J(x) = || x||1 = Id
I = {i : ( x0)i = 0} x0 +1 1 0 = div( 0) where j I,( 0)j = 0 x0 I J || 0,Ic || < 1 Support stability x0 || 0,Ic || = 1 2-stability only
Conclusion Gauges: encode linear models as singular points
Conclusion Gauges: encode linear models as singular points Certificates: guarantees
of model selection / 2 robustness (see poster 208 for a pure robustness result)
Conclusion Merci de votre attention ! Gauges: encode linear models
as singular points Certificates: guarantees of model selection / 2 robustness (see poster 208 for a pure robustness result)