Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Machine Learning in Production with R or Python...
Search
szilard
June 08, 2017
0
180
Machine Learning in Production with R or Python - Budapest Data Forum - June 2017
szilard
June 08, 2017
Tweet
Share
More Decks by szilard
See All by szilard
Gradient Boosting Machines (GBM): From Zero to Hero (with R and Python Code) - Data Con LA - Oct 2020
szilard
0
140
Make Machine Learning Boring Again: Best Practices for Using Machine Learning in Businesses - Albuquerque Machine Learning Meetup (Online) - Aug 2020
szilard
0
94
Better than Deep Learning: Gradient Boosting Machines (GBM) - eRum conference - invited talk - June 2020
szilard
0
92
Gradient Boosting Machines (GBM): From Zero to Hero (with R and Python Code) - LA Data Science Meetup - February 2020
szilard
0
83
A Random Walk in Data Science and Machine Learning in Practice - CEU, Business Analytics Masters - Budapest, Febr 2020
szilard
0
290
Better than My Meetup/Conference Talks: Going Deeper in Various GBM Topics - GBM Advanced Workshop - Budapest, Nov 2019
szilard
0
54
Gradient Boosting Machines (GBM): From Zero to Hero (with R and Python Code) - Budapest BI Forum, Budapest, Nov 2019
szilard
0
130
Make Machine Learning Boring Again: Best Practices for Using Machine Learning in Businesses - LA Data Science Meetup - Playa Vista, August 2019
szilard
0
100
Better than Deep Learning: Gradient Boosting Machines (GBM) / 2019 edition - Budapest R and Data Science Meetups - Budapest, June 2019
szilard
0
79
Featured
See All Featured
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
860
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
93
16k
Building Your Own Lightsaber
phodgson
103
6.1k
Product Roadmaps are Hard
iamctodd
PRO
49
11k
Become a Pro
speakerdeck
PRO
25
5k
Raft: Consensus for Rubyists
vanstee
136
6.6k
The Power of CSS Pseudo Elements
geoffreycrofte
73
5.3k
Producing Creativity
orderedlist
PRO
341
39k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
28
2k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
0
89
The Invisible Side of Design
smashingmag
298
50k
Transcript
Machine Learning in Production Szilárd Pafka, PhD Chief Scientist, Epoch
Budapest Data Forum June 2017
Machine Learning in Production with R Szilárd Pafka, PhD Chief
Scientist, Epoch Budapest Data Forum June 2017
Machine Learning in Production with R or Python Szilárd Pafka,
PhD Chief Scientist, Epoch Budapest Data Forum June 2017
Machine Learning in Production with R or maybe Python Szilárd
Pafka, PhD Chief Scientist, Epoch Budapest Data Forum June 2017
None
Disclaimer: I am not representing my employer (Epoch) in this
talk I cannot confirm nor deny if Epoch is using any of the methods, tools, results etc. mentioned in this talk
None
http://datascience.la/meetup-machine-learning-in-production-with-szilard-pafka/
None
None
None
None
None
None
None
None
None
None
None
None
None
Aggregation 100M rows 1M groups Join 100M rows x 1M
rows time [s] time [s]
Aggregation 100M rows 1M groups Join 100M rows x 1M
rows time [s] time [s]
None
None
None
None
binary classification, 10M records numeric & categorical features, non-sparse
http://www.cs.cornell.edu/~alexn/papers/empirical.icml06.pdf http://lowrank.net/nikos/pubs/empirical.pdf
http://www.cs.cornell.edu/~alexn/papers/empirical.icml06.pdf http://lowrank.net/nikos/pubs/empirical.pdf
None
None
None
None
None
EC2
n = 10K, 100K, 1M, 10M, 100M Training time RAM
usage AUC CPU % by core read data, pre-process, score test data
n = 10K, 100K, 1M, 10M, 100M Training time RAM
usage AUC CPU % by core read data, pre-process, score test data
None
None
None
None
None
None
None
10x
None
None
None
None
None
http://datascience.la/benchmarking-random-forest-implementations/#comment-53599
None
None
None
None
None
None
None
Best linear: 71.1
None
None
learn_rate = 0.1, max_depth = 6, n_trees = 300 learn_rate
= 0.01, max_depth = 16, n_trees = 1000
None
None
None
None
None
None
None
None
None
None
None
None
None
None
...
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None