Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CI改善もDatadogとともに
Search
τ μ [taumu]
February 11, 2025
Programming
0
330
CI改善もDatadogとともに
τ μ [taumu]
February 11, 2025
Tweet
Share
More Decks by τ μ [taumu]
See All by τ μ [taumu]
自作AIアプリの品質を上げるためにプロンプトエンジニアリングに再入門する
taumu
0
14
AIによる商品説明文生成〜よい説明文をとは何かを考える
taumu
0
30
react-query-auth + gin-jwtでユーザ認証
taumu
0
830
総合トップグロースに向けた負債返済のお話
taumu
0
1.1k
Gatsby + React + Redux によるゼロリスク・ハイリターンな個人開発
taumu
2
1.4k
Other Decks in Programming
See All in Programming
[AI Engineering Summit Tokyo 2025] LLMは計画業務のゲームチェンジャーか? 最適化業務における活⽤の可能性と限界
terryu16
2
220
AtCoder Conference 2025「LLM時代のAHC」
imjk
2
640
Findy AI+の開発、運用におけるMCP活用事例
starfish719
0
2k
実は歴史的なアップデートだと思う AWS Interconnect - multicloud
maroon1st
0
300
AI時代を生き抜く 新卒エンジニアの生きる道
coconala_engineer
1
510
それ、本当に安全? ファイルアップロードで見落としがちなセキュリティリスクと対策
penpeen
5
1.6k
【卒業研究】会話ログ分析によるユーザーごとの関心に応じた話題提案手法
momok47
0
160
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
630
從冷知識到漏洞,你不懂的 Web,駭客懂 - Huli @ WebConf Taiwan 2025
aszx87410
2
3.3k
Navigation 3: 적응형 UI를 위한 앱 탐색
fornewid
1
520
Pythonではじめるオープンデータ分析〜書籍の紹介と書籍で紹介しきれなかった事例の紹介〜
welliving
3
760
PostgreSQLで手軽にDuckDBを使う!DuckDB&pg_duckdb入門/osc25hi-duckdb
takahashiikki
0
230
Featured
See All Featured
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
Writing Fast Ruby
sferik
630
62k
How Software Deployment tools have changed in the past 20 years
geshan
0
31k
Max Prin - Stacking Signals: How International SEO Comes Together (And Falls Apart)
techseoconnect
PRO
0
59
Reality Check: Gamification 10 Years Later
codingconduct
0
2k
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
PRO
0
1k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
Digital Ethics as a Driver of Design Innovation
axbom
PRO
0
140
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
The Impact of AI in SEO - AI Overviews June 2024 Edition
aleyda
5
690
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
330
Transcript
20250212 taumu CI改善もDatadogとともに
SODA Inc. Backend Engineer taumu
鑑定付き 利用者数 No.1 スニーカー・トレカ フリマアプリ
SRE SWE SODAの技術組織と Datadog 権限はほぼ全て解放されており誰でも利用できる Application
Securityで 不正アクセスの自動ブロッ クをしたい APMで分散トレーシングし たい
SODA Inc. Backend Engineer Datadogの好きなところ: なんでも監視できる (複数種類の監視ツール使ったり チームごとにサイロ化したりしない) taumu
なんでも?
CI/CDも!
20250212 taumu CI改善もDatadogとともに
本発表について 背景:GitHub Actionsで実行されているCI/CDが遅い(ともに30分オーバー) CI = コミット毎に実行される自動テスト。マージには全件合格必須 CD: dev環境/本番環境へのデプロイ アクション:CI/CD実行時間短縮プロジェクトを立ち上げ様々な施策を実施 プロジェクトの詳細は以下の記事を参照ください
エンジニアだけのスクラムチームでリファクタリングプロジェクトを回してみたらこうなった https://zenn.dev/team_soda/articles/65fe9ee39abb8b 結果:CI/CDともに15分前後にまで短縮できた 本発表は本プロジェクトへのDatadogによる貢献について話す
DatadogのCI Visibility機能 CI/CD実行状況の統計が見られる機能
DatadogのCI Visibility機能 CI/CD実行状況の統計が見られる機能
PDCAサイクル Plan: ボトルネックを見つける&施策を出す 1 Do: 施策を実行する 2 Check: 期待通り改善されたかをチェックする 3
Action: 採用する or 棄却する 4
Plan: ボトルネックを見つける&施策を出す 1
Plan: ボトルネックを見つける&施策を出す Toplistで ワークフローの ボトルネックを調べる ボトルネック (平均30分掛かっている) (1)ボトルネックのワークフローを見つける
Plan: ボトルネックを見つける&施策を出す ワークフローの詳細を開くとフ レームグラフが見られる クリティカルパスで 絞り込める (2)ボトルネックのジョブを見つける
Plan: ボトルネックを見つける&施策を出す クリティカルパスで 絞り込める ボトルネックになっているジョブに対して施策を考える (ジョブの実行順序の組み替えだけで10分以上短縮できた例もあり) (2)ボトルネックのジョブを見つける ワークフローの詳細を開くとフ レームグラフが見られる
PDCAサイクル Plan: ボトルネックを見つける&施策を出す 1 Do: 施策を実行する 2 Check: 期待通り改善されたかをチェックする 3
Action: 採用する or 棄却する 4
Do: 施策を実行する 2
Do: 施策を実行する GitHub Actionsのymlファイルを改修してリリースする
PDCAサイクル Plan: ボトルネックを見つける&施策を出す 1 Do: 施策を実行する 2 Check: 期待通り改善されたかをチェックする 3
Action: 採用する or 棄却する 4
Check: 期待通り改善されたかをチェックする 3
Check: 期待通り改善されたかをチェックする Timeseriesで時系列平均を表示 CI実行時間の削減を確認 リリース前後でCI実行時間が削減されているかチェック
PDCAサイクル Plan: ボトルネックを見つける&施策を出す 1 Do: 施策を実行する 2 Check: 期待通り改善されたかをチェックする 3
Action: 採用する or 棄却する 4
Action: 採用する or 棄却する 4
Action: 採用する or 棄却する 採用 棄却 実行時間削減を達成できたか Check Action 効果のあった施策だけを採用することは重要
(普段の機能開発もそうだが、特にCIワークフローファイルは表現力の限界から負債化しやすいため) →効果があるかないか正確に把握できることが重要 Datadogで施策に対する効果を正確に把握できるので ビジネス上の判断が正確に下せる
PDCAサイクル Plan: ボトルネックを見つける&施策を出す 1 Do: 施策を実行する 2 Check: 期待通り改善されたかをチェックする 3
Action: 採用する or 棄却する 4 1~4までやったら、また1に戻る→このループを繰り返す
結果 ボトルネックになっていた CIワークフロー(統合テスト) 2ヶ月掛けて26m→13.5m
• Runnerのスケールアップ • ジョブ実行順序の組み替え • ビルドをキャッシュさせる[1][2] • ファイルの依存ツリーを作って編集したファイルに依存するテストだけ行う[1][3] 最後に:行った施策について 施策の検討に集中できるので、高難度な施策を実現するに至った
[1] どうやるの?CICDの実行時間をグッと短縮した方法 https://zenn.dev/team_soda/articles/b10194a91dbd34 [2] Goのビルドキャッシュを使って CIを7分短縮した話 https://zenn.dev/team_soda/articles/b2ae7b683f3f15 [3] 部分的にGoのテスト速度向上 https://zenn.dev/team_soda/articles/3686c0162f27dc
まとめ DatadogのCI Visibilityを使うと • CI実行に関する正確な統計情報が一目瞭然になる それにより • CI実行時間のボトルネックを簡単に見つけることができる • PDCAサイクルを回す形で継続的なCI改修ができる
• CIの改修に対する変化が明確になり、採用・棄却の正確な判断ができる • それにより大胆なCI改修も入れやすくなる