Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Dynamic_Data_Selection_for_Neural_Machine_Trans...
Search
MARUYAMA
March 28, 2019
0
130
Dynamic_Data_Selection_for_Neural_Machine_Translation.pdf
MARUYAMA
March 28, 2019
Tweet
Share
More Decks by MARUYAMA
See All by MARUYAMA
vampire.pdf
tmaru0204
0
180
Misspelling_Oblivious_Word_Embedding.pdf
tmaru0204
0
190
Simple_Unsupervised_Summarization_by_Contextual_Matching.pdf
tmaru0204
0
180
Controlling_Text_Complexity_in_Neural_Machine_Translation.pdf
tmaru0204
0
170
20191028_literature-review.pdf
tmaru0204
0
150
Hint-Based_Training_for_Non-Autoregressive_Machine_Translation.pdf
tmaru0204
0
140
Soft_Contextual_Data_Augmentation_for_Neural_Machine_Translation_.pdf
tmaru0204
0
170
An_Embarrassingly_Simple_Approach_for_Transfer_Learning_from_Pretrained_Language_Models_.pdf
tmaru0204
0
160
Addressing_Trobulesome_Words_in_Neural_Machine_Translation.pdf
tmaru0204
0
160
Featured
See All Featured
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
Site-Speed That Sticks
csswizardry
11
890
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
What's in a price? How to price your products and services
michaelherold
246
12k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.7k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
How STYLIGHT went responsive
nonsquared
100
5.8k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
657
61k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
2.7k
The Pragmatic Product Professional
lauravandoore
36
6.9k
Mobile First: as difficult as doing things right
swwweet
224
10k
Transcript
%ZOBNJD%BUB4FMFDUJPO GPS/FVSBM.BDIJOF5SBOTMBUJPO .BSMJFTWBOEFS8FFT "SJBOOB#JTB[[B $ISJTUPG.PO[&/.-1 QBHFTr -JUFSBUVSFSFWJFX /BHBPLB6OJWFSTJUZPG5FDIOPMPHZ5BLVNJ.BSVZBNB
"CTUSBDU ⾣ֶश࣌ؒΛݮͭͭ͠ɺੑೳΛվળ ⾣/.5ͷֶशதʹɺಈతʹֶशσʔλΛมԽͤ͞Δख๏ΛఏҊ ⾣طଘͷσʔλબख๏Λ/.5ʹదԠ͠ɺޮՌΛݕূ ˠ1#.5ʹޮՌత͕ͩɺ/.5ʹ͓͍ͯ͋·ΓޮՌ͕ͳ͍
*OUSPEVDUJPO ⾣ͭͷ࣮ݧ ɾطଘͷσʔλબख๏ 4UBUJD%BUB4FMFDUJPO ɾ/.5ʹ߹Θͤͨσʔλબख๏ %ZOBNJD%BUB4FMFDUJPO 4BNQMJOH (SBEVBMpOFUVOJOH
4UBUJD%BUB4FMFDUJPO ɾ(FOFSBM ɾ*OEPNBJO ςετσʔλͱಉ͡υϝΠϯͷσʔλ ⾣छྨͷݴޠϞσϧΛߏங *OEPNBJO (FOFSBM 4PVSDFTJEF 5BSHFUTJEF º
⾣ͭͷίʔύεΛར༻
4UBUJD%BUB4FMFDUJPO $ίʔύε I*OEPNBJO G(FOFSBM Cݴޠ fTPVSDFTJEF eUBSHFUTJEF ⾣֤ݴޠϞσϧΛ༻͍ͯɺDSPTTFOUSPQZEJ⒎FSFODF
$&% Λܭࢉ શֶशσʔλΛ$&%ॱʹιʔτͯ͠ɺ্ҐOจରΛֶशʹར༻
%ZOBNJD%BUB4FMFDUJPO ⾣4BNQMJOH $&%ʹج͍ͮͨॏΈ͖αϯϓϦϯά ςετσʔλͱؔ࿈ͷ͋ΔσʔλબΕ͍͢
%ZOBNJD%BUB4FMFDUJPO ⾣(SBEVBMpOFUVOJOH FQPDIΛॏͶΔʹɺؔ࿈ͷ͍σʔλΛֶशσʔλ͔Βআ֎
%ZOBNJD%BUB4FMFDUJPO ⾣(SBEVBMpOFUVOJOH iFQPDIͷσʔλαΠζn(i) ЋSFMBUJWFTUBSUTJ[F 㱡Ћ㱡 cGcUSBJOJOHEBUBTJ[F ЌSFUFOUJPOSBUF 㱡Ќ㱡 Б/VNCFSPGDPOTFDVUJWFFQPDI TFMFDUFETVCTFUJTVTFE
Б㱢
&YQFSJNFOUTFUUJOH ⾣(FSNBOˠ&OHMJTI ⾣.BDIJOF5SBOTMBUJPO4ZTUFNT ɾ/.5&ODPEFSEFDPEFSNPEFMXJUIHMPCBMBUUFOUJPO ɾ1#.5.PTFT
&YQFSJNFOUTFUUJOH ⾣%BUBTFU ɾ&.&"NFEJDBMHVJEFMJOFT ɾ.PWJFEJBMPHVFT ɾ5&%UBMLT ɾ8.5OFXT ֶश։ൃσʔλʹ.JY ධՁʹ֤ධՁηοτΛར༻
3FTVMU ⾣4UBUJDEBUBTFMFDUJPOGPS1#.5BOE/.5 JOEPNBJOͷσʔλͷΈ ˒ 4UBUJDEBUBTFMFDUJPO ˔ JOEPNBJOͷσʔλͷΈ ˒
4UBUJDEBUBTFMFDUJPO ˔ 1#.5 /.5
3FTVMU ⾣%ZOBNJDEBUBTFMFDUJPOGPS/.5 ಉֶ͡श࣌ؒʹ͓͍ͯɺ TUBUJDTFMFDUJPOΑΓྑ͍݁Ռ 8.5OFXTΛআ͘σʔλͰɺ TUBUJDTFMFDUJPOͷ࠷ऴ݁ՌΑΓ ߴ͍είΞ
3FTVMU ⾣%ZOBNJDEBUBTFMFDUJPOGPS/.5
$PODMVTJPO ⾣ֶश࣌ؒΛݮͭͭ͠ɺੑೳΛվળ ⾣/.5ͷֶशதʹɺಈతʹֶशσʔλΛมԽͤ͞Δख๏ΛఏҊ ⾣طଘͷσʔλબख๏Λ/.5ʹదԠ͠ɺޮՌΛݕূ ˠ1#.5ʹޮՌత͕ͩɺ/.5ʹ͓͍ͯ͋·ΓޮՌ͕ͳ͍