Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Dynamic_Data_Selection_for_Neural_Machine_Trans...
Search
MARUYAMA
March 28, 2019
0
130
Dynamic_Data_Selection_for_Neural_Machine_Translation.pdf
MARUYAMA
March 28, 2019
Tweet
Share
More Decks by MARUYAMA
See All by MARUYAMA
vampire.pdf
tmaru0204
0
190
Misspelling_Oblivious_Word_Embedding.pdf
tmaru0204
0
200
Simple_Unsupervised_Summarization_by_Contextual_Matching.pdf
tmaru0204
0
190
Controlling_Text_Complexity_in_Neural_Machine_Translation.pdf
tmaru0204
0
170
20191028_literature-review.pdf
tmaru0204
0
160
Hint-Based_Training_for_Non-Autoregressive_Machine_Translation.pdf
tmaru0204
0
150
Soft_Contextual_Data_Augmentation_for_Neural_Machine_Translation_.pdf
tmaru0204
0
180
An_Embarrassingly_Simple_Approach_for_Transfer_Learning_from_Pretrained_Language_Models_.pdf
tmaru0204
0
160
Addressing_Trobulesome_Words_in_Neural_Machine_Translation.pdf
tmaru0204
0
170
Featured
See All Featured
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
Mozcon NYC 2025: Stop Losing SEO Traffic
samtorres
0
90
What's in a price? How to price your products and services
michaelherold
246
13k
Become a Pro
speakerdeck
PRO
31
5.7k
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
88
How To Speak Unicorn (iThemes Webinar)
marktimemedia
1
340
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
Balancing Empowerment & Direction
lara
5
820
AI: The stuff that nobody shows you
jnunemaker
PRO
1
13
How to Ace a Technical Interview
jacobian
281
24k
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
0
950
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
130
Transcript
%ZOBNJD%BUB4FMFDUJPO GPS/FVSBM.BDIJOF5SBOTMBUJPO .BSMJFTWBOEFS8FFT "SJBOOB#JTB[[B $ISJTUPG.PO[&/.-1 QBHFTr -JUFSBUVSFSFWJFX /BHBPLB6OJWFSTJUZPG5FDIOPMPHZ5BLVNJ.BSVZBNB
"CTUSBDU ⾣ֶश࣌ؒΛݮͭͭ͠ɺੑೳΛվળ ⾣/.5ͷֶशதʹɺಈతʹֶशσʔλΛมԽͤ͞Δख๏ΛఏҊ ⾣طଘͷσʔλબख๏Λ/.5ʹదԠ͠ɺޮՌΛݕূ ˠ1#.5ʹޮՌత͕ͩɺ/.5ʹ͓͍ͯ͋·ΓޮՌ͕ͳ͍
*OUSPEVDUJPO ⾣ͭͷ࣮ݧ ɾطଘͷσʔλબख๏ 4UBUJD%BUB4FMFDUJPO ɾ/.5ʹ߹Θͤͨσʔλબख๏ %ZOBNJD%BUB4FMFDUJPO 4BNQMJOH (SBEVBMpOFUVOJOH
4UBUJD%BUB4FMFDUJPO ɾ(FOFSBM ɾ*OEPNBJO ςετσʔλͱಉ͡υϝΠϯͷσʔλ ⾣छྨͷݴޠϞσϧΛߏங *OEPNBJO (FOFSBM 4PVSDFTJEF 5BSHFUTJEF º
⾣ͭͷίʔύεΛར༻
4UBUJD%BUB4FMFDUJPO $ίʔύε I*OEPNBJO G(FOFSBM Cݴޠ fTPVSDFTJEF eUBSHFUTJEF ⾣֤ݴޠϞσϧΛ༻͍ͯɺDSPTTFOUSPQZEJ⒎FSFODF
$&% Λܭࢉ શֶशσʔλΛ$&%ॱʹιʔτͯ͠ɺ্ҐOจରΛֶशʹར༻
%ZOBNJD%BUB4FMFDUJPO ⾣4BNQMJOH $&%ʹج͍ͮͨॏΈ͖αϯϓϦϯά ςετσʔλͱؔ࿈ͷ͋ΔσʔλબΕ͍͢
%ZOBNJD%BUB4FMFDUJPO ⾣(SBEVBMpOFUVOJOH FQPDIΛॏͶΔʹɺؔ࿈ͷ͍σʔλΛֶशσʔλ͔Βআ֎
%ZOBNJD%BUB4FMFDUJPO ⾣(SBEVBMpOFUVOJOH iFQPDIͷσʔλαΠζn(i) ЋSFMBUJWFTUBSUTJ[F 㱡Ћ㱡 cGcUSBJOJOHEBUBTJ[F ЌSFUFOUJPOSBUF 㱡Ќ㱡 Б/VNCFSPGDPOTFDVUJWFFQPDI TFMFDUFETVCTFUJTVTFE
Б㱢
&YQFSJNFOUTFUUJOH ⾣(FSNBOˠ&OHMJTI ⾣.BDIJOF5SBOTMBUJPO4ZTUFNT ɾ/.5&ODPEFSEFDPEFSNPEFMXJUIHMPCBMBUUFOUJPO ɾ1#.5.PTFT
&YQFSJNFOUTFUUJOH ⾣%BUBTFU ɾ&.&"NFEJDBMHVJEFMJOFT ɾ.PWJFEJBMPHVFT ɾ5&%UBMLT ɾ8.5OFXT ֶश։ൃσʔλʹ.JY ධՁʹ֤ධՁηοτΛར༻
3FTVMU ⾣4UBUJDEBUBTFMFDUJPOGPS1#.5BOE/.5 JOEPNBJOͷσʔλͷΈ ˒ 4UBUJDEBUBTFMFDUJPO ˔ JOEPNBJOͷσʔλͷΈ ˒
4UBUJDEBUBTFMFDUJPO ˔ 1#.5 /.5
3FTVMU ⾣%ZOBNJDEBUBTFMFDUJPOGPS/.5 ಉֶ͡श࣌ؒʹ͓͍ͯɺ TUBUJDTFMFDUJPOΑΓྑ͍݁Ռ 8.5OFXTΛআ͘σʔλͰɺ TUBUJDTFMFDUJPOͷ࠷ऴ݁ՌΑΓ ߴ͍είΞ
3FTVMU ⾣%ZOBNJDEBUBTFMFDUJPOGPS/.5
$PODMVTJPO ⾣ֶश࣌ؒΛݮͭͭ͠ɺੑೳΛվળ ⾣/.5ͷֶशதʹɺಈతʹֶशσʔλΛมԽͤ͞Δख๏ΛఏҊ ⾣طଘͷσʔλબख๏Λ/.5ʹదԠ͠ɺޮՌΛݕূ ˠ1#.5ʹޮՌత͕ͩɺ/.5ʹ͓͍ͯ͋·ΓޮՌ͕ͳ͍