Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Simple_Unsupervised_Summarization_by_Contextual...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
MARUYAMA
December 08, 2019
0
190
Simple_Unsupervised_Summarization_by_Contextual_Matching.pdf
MARUYAMA
December 08, 2019
Tweet
Share
More Decks by MARUYAMA
See All by MARUYAMA
vampire.pdf
tmaru0204
0
190
Misspelling_Oblivious_Word_Embedding.pdf
tmaru0204
0
200
Controlling_Text_Complexity_in_Neural_Machine_Translation.pdf
tmaru0204
0
180
20191028_literature-review.pdf
tmaru0204
0
160
Hint-Based_Training_for_Non-Autoregressive_Machine_Translation.pdf
tmaru0204
0
150
Soft_Contextual_Data_Augmentation_for_Neural_Machine_Translation_.pdf
tmaru0204
0
180
An_Embarrassingly_Simple_Approach_for_Transfer_Learning_from_Pretrained_Language_Models_.pdf
tmaru0204
0
160
Addressing_Trobulesome_Words_in_Neural_Machine_Translation.pdf
tmaru0204
0
170
Simple_Unsupervised_Keyphrase_Extraction_using_Sentence_Embeddings.pdf
tmaru0204
0
200
Featured
See All Featured
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
52k
The Curse of the Amulet
leimatthew05
1
8.7k
Site-Speed That Sticks
csswizardry
13
1.1k
Bash Introduction
62gerente
615
210k
Principles of Awesome APIs and How to Build Them.
keavy
128
17k
Applied NLP in the Age of Generative AI
inesmontani
PRO
4
2k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
55k
Why Our Code Smells
bkeepers
PRO
340
58k
Designing for Timeless Needs
cassininazir
0
130
Raft: Consensus for Rubyists
vanstee
141
7.3k
The #1 spot is gone: here's how to win anyway
tamaranovitovic
2
940
Transcript
4JNQMF6OTVQFSWJTFE4VNNBSJ[BUJPO CZ$POUFYUVBM.BUDIJOH จݙհ
1BQFS ɾ"$- ɾIUUQTXXXBDMXFCPSHBOUIPMPHZ1 ɾQBHFTr
"CTUSBDU ⾣ͭͷݴޠϞσϧͷΈͷγϯϓϧͳڭࢣͳ͠ੜܕཁ ⾣ੜܕཁɾநग़ܕཁͷํͰ༗༻ੑΛࣔͨ͠ ɾ$POUFYUVBMNBUDIJOHNPEFM ɾ%PNBJOqVFODZNPEFM
*OUSPEVDUJPO ⾣ڭࢣͳ͠ཁ ⾣ෳࡶͳϞσϧɾֶशΛඞཁͱ͠ͳ͍ϞσϧΛఏҊ MFOHUIDPOUSPMMFEWBSJBUJPOBMBVUPFODPEFS HFOFSBUJWFBEWFSTBSJBMOFUXPSL ʜ FH
.PEFM ⾣ཁจɺ࣍ͷͭͷಛੑΛຬ͍ͨͯ͠Δඞཁ͕͋Δ ਖ਼֬ੑ 'BJUIGVMOFTT ݪจͷҙຯͱಉ༷ͷҙຯΛ࣋ͭ ྲྀெੑ 'MVFODZ จ๏తʹਖ਼͘͠ཧղͰ͖Δ P(y|x) ∝
pcm (y|x)pfm (y|x)λ ೖྗจॻ x ཁจ y ਖ਼֬ੑ pcm (y|x) ྲྀெੑ pfm (y|x)
$POUFYUVBM.BUDIJOH.PEFM ⾣ਖ਼֬ੑೖྗςΩετͱग़ྗ୯ޠͷίαΠϯྨࣅ pcm (y|x) = N ∏ n=1 qcm (yn
|y<n , x) ͱͨ͠ͱ͖ sω = maxj≥1 Sim(x1:j , ω) ͜͜Ͱ ग़ྗީิޠͱೖྗςΩετͱͷྨࣅΛ ω x1:j qcm (y1 = ω|x) = softmax(s)
$POUFYUVBM.BUDIJOH.PEFM ⾣ॲཧखॱ sω = maxj≥zn−1 Sim(x1:j , ω) ࣍ࣜΑΓ ྨࣅΛܭࢉ
zn−1 ʹରԠ͘ҐஔҎ͔߱͠ߟྀ͠ͳ͍ zn−1 yn−1 ୯ௐੑͷԾఆ ग़ྗ ୯ޠҐஔΛܭࢉ qcm zn ͕ೖྗจॻඌͱͳΔ·Ͱ܁Γฦ͠ zn
%PNBJO'MVFODZ.PEFM ⾣ྲྀெੑݴޠϞσϧ֬ ೖྗจॻʹదͨ͠ޠΛબ͢ΔΑ͏ग़ྗޠኮΛ੍ ݴޠϞσϧͷग़ྗޠኮ7ΛϘϩϊΠׂʹΑΓ੍͖ޠኮ$ʹϚοϐϯά ͋Δڑ্ۭؒͷҙͷҐஔʹஔ͞Εͨෳݸͷʢʣʹରͯ͠ɺ ಉҰڑ্ۭؒͷଞͷ͕Ͳͷʹ͍͔ۙʹΑͬͯྖҬ͚͞Εͨਤͷ͜ͱɻ IUUQTKBXJLJQFEJBPSHXJLJϘϩϊΠਤ 8JLJQFEJBϘϩϊΠਤ
%PNBJO'MVFODZ.PEFM ⾣ྲྀெੑݴޠϞσϧ֬ pfm (y|x) = N ∏ n=1 ∑ ω′∈N(yn
) lm(ω′|y<n ) ϘϊϩΠׂͷʹ ೖྗจॻ୯ޠΛ༻͍Δ ͷϘϩϊΠྖҬΛͱͨ͠ͱ͖ ݴޠϞσϧ֬ yn N(yn )
.PEFM ⾣ཁจɺ࣍ͷͭͷಛੑΛຬ͍ͨͯ͠Δඞཁ͕͋Δ ਖ਼֬ੑ 'BJUIGVMOFTT ݪจͷҙຯͱಉ༷ͷҙຯΛ࣋ͭ ྲྀெੑ 'MVFODZ จ๏తʹਖ਼͘͠ཧղͰ͖Δ P(y|x) ∝
pcm (y|x)pfm (y|x)λ ೖྗจॻ x ཁจ y ਖ਼֬ੑ pcm (y|x) ྲྀெੑ pfm (y|x)
&YQFSJNFOUBMTFUVQ ⾣.PEFM ⾣%BUBTFU ɾੜܕཁ&OHMJTI(JHBXPSEEBUB 3VTI ɾநग़ܕཁ(PPHMFEBUBTFU 'JMJQQPWB
ɾGPSXBSEMBOHVBHFNPEFMPG&-.P ɾMBZFST-45.NPEFM pcm (y|x) pfm (y|x)
2VBOUJUBUJWF3FTVMUT 5BCMFੜܕཁͷ݁Ռ 5BCMFநग़ܕཁͷ݁Ռ
"OBMZTJT ⾣ೖྗจॻͷ୯ޠநग़͚ͩͰͳ͘ ੜͰ͖͍ͯΔ
4VNNBSZ ⾣ͭͷݴޠϞσϧͷΈͷγϯϓϧͳڭࢣͳ͠ੜܕཁ ⾣ੜܕཁɾநग़ܕཁͷํͰ༗༻ੑΛࣔͨ͠ ɾ$POUFYUVBMNBUDIJOHNPEFM ɾ%PNBJOqVFODZNPEFM
None